پیشبینی تراکم جریان شکافنده در سواحل میانه با استفاده از شبکههای عصبی مصنوعی
Authors
Abstract:
جریانهای شکافنده جریانهایی قوی، قارچی شکل هستند که عامل اصلی تلفات ناشی از غرق شدن شناگران در منطقه خیزاب ساحلی محسوب میشوند. با توجه به رفتار متغیر این جریانها و محدودیت های بسیار در مشاهدات میدانی، در این پژوهش با استفاده از شبکه عصبی مصنوعی، مدلی در مورد تخمین میزان تراکم جریانهای شکافنده در سواحل حالت میانه ارائه شده است. به این منظور نخست اطلاعات مرتبط به سیستم جریان شکافنده از طریق مدل عددی Mike21/3 به صورت پارامترهای بیبعد عدد فرود، ارتفاع موج، پهنای خیزاب و پهنای کانال جریان استخراج شدند. در گام بعدی تاثیر هر یک از پارامترهای بیبعد روی تراکم جریان برای توابع و نرونهای مختلف شبکه عصبی بررسی شد. سپس نتایج مدل در هجوم امواجی با ارتفاع مختلف با نتایج میدانی سایر محققین مورد مقایسه قرار گرفت و تطابق بسیار خوبی بین آنها مشاهده شد. نتایج این تحقیق نشان میدهد با افزایش ارتفاع امواج بر سرعت جریان و فواصل کانال ها افزوده میشود و به تدریج از میزان تراکم جریانکاسته میشود. نتایج دیگر این تحقیق حاکی از آن است در شرایطی که امواج کمارتفاعتر بر دریا حاکمند، تابع گرادینت دیسنت ویت آداپتیو لرنینگ ریت (gda) با کمترین خطا (RMSE معادل 013/0) و در شرایطی که امواج مرتفعتر بر دریا حاکمند تابع کواسی نیوتن (bfg) با کمترین خطا (RMSE معادل 00282/0) هر کدام با 14 نرون دقیقترین تخمین را از میزان تراکم جریانهای شکافنده در سواحلی باحالت میانه ارائه میدهند.
similar resources
تولید مصنوعی جریان رودخانه با استفاده از شبکههای عصبی مصنوعی
در این مطالعه قابلیت مدلهای شبکه عصبی مصنوعی در زمینه تولید مصنوعی جریان ارزیابی میشود. مدلی که برای تولید مصنوعی بکار رفته با ترکیب مدل شبکه عصبی و یک مؤلفه تصادفی با توزیع نرمال ایجاد شده است. در توسعه مدل از شبکه عصبی چند لایه تغذیه پیشرفتی با الگوریتم آموزشی انتشار برگشتی خطا استفاده شده است. بر این اساس مدل، سریهای بلند مدت و تا 300 سال جریان مصنوعی روزانه در رودخانه خرسان را تنها با ...
full textتخمین هدایت هیدرولیکی اشباع در برخی از خاکهای استان ایلام با استفاده از شبکههای عصبی مصنوعی و روشهای رگرسیونی
هدایت هیدرولیکی اشباع ) Ks ( یکی از ورودیهای مهم در مدلسازی جریان آب و انتقال آلایندهها در خاک، طراحی سیستمهای آبیاری و زهکشی، مدلسازی آبهایزیرزمینی و فرایندهای زیستمحیطی است. اندازهگیری مستقیم Ks در مزرعه و آزمایشگاه میسّر میباشد؛ لیکن، معمولاً زمانبر، پرهزینه و دشوار بوده و در سطوحبزرگ نیز غیرعملی است. افزون بر این، بهدلیل غیرهمگن بودن خاک و خطاهای آزمایشگاهی، تا حدودی این اندازهگیریها غیرقابل ...
full textپیش بینی رفتار مشتریان با استفاده از تکنیک شبکههای عصبی مصنوعی
امروزه روش های کمی، به یکی از مهم ترین ابزارهای پیش بینی برای اخذ تصمیمات و سرمایه گذاریهای کلان در بازارها تبدیل شده اند. دقت پیش بینی، یکی از مهم ترین فاکتورهای انتخاب روش پیش بینی است؛ شبکه های عصبی مصنوعی، برنامه های کامپیوتری منعطفی هستند که در سطح گسترده ای برای پیش بینی، با درجه بالایی از دقت به کار برده می شوند. امروزه میتوان با استفاده از تکنیک های داده کاوی و شبکه های عصبی به بررسی و ...
full textشبیه سازی شوری آب زیرزمینی با استفاده از شبکه عصبی مصنوعی(ANN) در سواحل استان مازندران
چکیده امروزه یکی از مسائل محدود کننده در بحث تأمین آب، مسئله کیفیت آب است. اندازه گیری پارامتر های کیفی آب زیر زمینی مستلزم صرف هزینه های زیاد و زمان بر می باشد. برآورد پارامترهای کیفی آب با استفاده از مدل ها موجب کاهش هزینه ها و دسترسی به آمار جامعی برای مدیریت منابع آب خواهد شد. در این تحقیق از شبکه عصبی مصنوعی (ANN) برای شبیه سازی شوری آب زیرزمینی در سواحل استان مازندران استفاده شد. بدین ...
full textMy Resources
Journal title
volume 5 issue 2
pages -
publication date 2020-02-20
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023