پیشبینی تراوایی سنگ مخزن کربناته با استفاده از شبکۀ عصبی مصنوعی و ماشین بردار پشتیبان در یکی از مخازن نفتی ایران
Authors
Abstract:
تراوایی از مؤلفههای اساسی در ارزیابی مخازن هیدروکربنی است که عمدتاً از طریق اندازهگیریهای آزمایشگاهی از مغزه یا دادههای چاهآزمایی به دست میآید. با این حال، به دلیل هزینۀ زیاد و فراوانی کم این نوع از دادهها، پیشبینی تراوایی با استفاده از دادههای چاهنگاری از جایگاه ویژهای برخوردار است. در این مطالعه، برای تخمین تراوایی، ابتدا دادههای چاهنگارها با توجه به مطالعات زمینشناسی صورت گرفته بر روی میدان مورد مطالعه به چهار گروه رخسارههای الکتریکی دستهبندی میشوند: پکستون-وکستون–مادستون، پکستون–وکستون، گرینستون–پکستون و گرینستون–پکستون–وکستون. در این مطالعه، از شبکههای عصبی مصنوعی و ماشین بردار پشتیبان برای تخمین تراوایی در یکی از مخازن ناهمگون کربناته با استفاده از دادههای چهار چاه در میدان مذکور استفاده شده است. جهت تخمین تراوایی، ابتدا دادههای نگارههای چاه با استفاده از روشهای «تجزیهوتحلیل مؤلفههای اصلی» و «تجزیهوتحلیل خوشۀ مبتنی بر مدل» به رخسارههای الکتریکی تقسیمبندی شدهاند. سپس هر رخسارۀ الکتریکی بهعنوان ورودی شبکۀ عصبی مصنوعی و ماشین بردار پشتیبان جهت تخمین تراوایی در نظر گرفته شدهاند. شبکۀ عصبی مصنوعی با استفاده از «توابع پسانتشار لونبرگ»، «گرادیان نزولی با تکانه وزنی» و «تابع یادگیری بیاس» با ده لایۀ مخفی آموزش داده شده است. از ماشین بردار پشتیبان با رگرسیونهای اپسیلون و نو با توابع کرنلی مختلف استفاده شده است. در این مطالعه، تابع کرنل شعاعی ماشین بردار پشتیبان دارای خطای کمتری در مقایسه با شبکۀ عصبی است. خطای حاصل از ماشین بردار پشتیبان برای رخسارههای الکتریکی گروه اول تا چهارم به ترتیب برابر است با: 0.0065، 0.0242، 3.6587 و 0.0195.
similar resources
تخمین تراوایی با استفاده از الکتروفاسیسها در یکی از مخازن کربناته میادین جنوب غرب ایران
در این تحقیق یک رویکرد دو مرحلهای برای پیشبینی تراوایی از نمودارهای چاه ارائه شده است که با استفاده از رگرسیون غیرپارامتری در رابطه با آنالیز آماری چندمتغیره ارائه شده است. ابتدا، دادههای چاه به انواع الکتروفاسیسها طبقهبندی میشوند. این طبقهبندی بر اساس اندازهگیریهای به دست آمده از نمودارهای چاه است که منعکس کننده کانیها و رخسارههای سنگی در بازه نمودارگیری است. این فرایند ترکیبی از آ...
full textمدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی
Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optim...
full textمدلسازی مقاومت فشاری بتن غلتکی با استفاده از شبکه عصبی مصنوعی، انفیس و ماشین بردار پشتیبان
امروزه از بتن غلتکی در ساخت سدها و روسازی راهها استفاده میشود و طی سالهای اخیر استفاده از این نوع بتن به علت مزایایی چون کوتاه شدن زمان ساخت، در دسترس بودن مصالح مورد نیاز، عملکرد مناسب در نواحی سرد و عمر مفید طولانی گسترش یافته است. مهمترین خاصیت مکانیکی بتن غلتکی، مقاومت فشاری میباشد که افزایش آن میتواند عملکرد این نوع بتن را بهبود بخشد. حساسیت بتن غلتکی به اجزای تشکیلدهنده آن سبب مشک...
full textتخمین تراوایی با استفاده از مدل های تجربی و روش شبکه ی عصبی مصنوعی در یکی از مخازن کربناته ی جنوب ایران
full text
بررسی تاثیر استفاده از نانو اکسید سیلیسیم در تغییر ترشوندگی سنگ مخزن کربناته در یکی از میادین نفتی جنوبغربی ایران
full text
تخمین تراوایی با استفاده از الکتروفاسیس ها در یکی از مخازن کربناته میادین جنوب غرب ایران
در این تحقیق یک رویکرد دو مرحله ای برای پیش بینی تراوایی از نمودارهای چاه ارائه شده است که با استفاده از رگرسیون غیرپارامتری در رابطه با آنالیز آماری چندمتغیره ارائه شده است. ابتدا، داده های چاه به انواع الکتروفاسیس ها طبقه بندی می شوند. این طبقه بندی بر اساس اندازه گیری های به دست آمده از نمودارهای چاه است که منعکس کننده کانی ها و رخساره های سنگی در بازه نمودارگیری است. این فرایند ترکیبی از آن...
full textMy Resources
Journal title
volume 43 issue 2
pages 281- 295
publication date 2017-07-23
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023