پیش‌بینی بارش‌های سالانه در ایستگاه‌های سینوپتیک کرمانشاه و نوژۀ همدان با استفاده از شبکۀ عصبی مصنوعی

Authors

  • حمیدرضا الفت میری کارشناس ارشد اقلیم‌شناسی، دانشگاه رازی، کرمانشاه
  • غلامرضا زاهدی استادیار مهندسی شیمی، دانشگاه رازی، کرمانشاه
  • فیروز مجرد دانشیار اقلیم‎شناسی، دانشگاه رازی، کرمانشاه
Abstract:

اهمّیّت پیش‌بینی بارش به عنوان مهم‌ترین عنصر اقلیمی و مبنای تمام برنامه‌ریزی‌ها، به‌ویژه در مناطقی که رژیم‌های بارش تغییرات معنی‌دار دارد، بر هیچ‌کس پوشیده نیست. استفاده از شبکه‎های عصبی مصنوعی یکی از روش‎های پیش‎بینی است که در سال‎های اخیر توسعۀ زیادی یافته است. در این پژوهش برای پیش‎بینی بارش‎های سال بعد در دو ایستگاه سینوپتیک کرمانشاه و نوژۀ همدان از داده‎های برخی از عناصر اقلیمی فصول سرد سال قبل استفاده شد. به این منظور، سری‎های زمانی هفت عنصر اقلیمی شامل میانگین دما، بارش، رطوبت نسبی، نسبت مخلوط، فشار بخار، دمای نقطۀ شبنم و فشار سطح دریا به عنوان ورودی به شبکه‎های عصبی وارد گردید. خروجی شبکه‎ها، بارش سال بعد در نظر گرفته شد. با توجّه به ماهیت غیرخطّی عناصر اقلیمی منتخب در این تحقیق، از شبکه‎های پرسپترون چندلایهاستفاده شد که از انواع شبکه‎های پیشرو با الگوریتم‎های آموزشی نظارتی و مناسب داده‎های غیرخطّی است. برای آموزش شبکه‎ها از دو ردۀ الگوریتم آموزشی دیگر، شامل الگوریتم‎های آموزشیBP  و الگوریتم نرمال‎سازی اعداد استفاده شد. در نهایت، ترکیب این الگوریتم‎ها منجر به تولید 720 شبکۀ آموزشی در دو ایستگاه شد. نتایج تحقیق نشان داد شبکۀ عصبی مصنوعی در هر دو ایستگاه به طرز مناسبی مقادیر بارش سالانه را پیش‎بینی می‎کند. بهترین پیش‎بینی در ایستگاه کرمانشاه مربوط به تابع آموزشیtraingd  با الگوریتم نرمال‎سازی میانگین و انحراف معیار با خطای آزمایش معادل 0195/0 در دورۀ سرد سال (پاییز و زمستان)، و در ایستگاه نوژۀ همدان مربوط به تابع آموزشی traingdx با الگوریتم نرمال‌سازی 06/0 pca با خطای آزمایش معادل 0047/0 در فصل زمستان است.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پتانسیل‌یابی مناطق توسعۀ شهری با استفاده از شبکۀ عصبی مصنوعی (مطالعۀ موردی: شهر کرمانشاه)

رشد سریع شهرنشینی و توسعة شهری به‌ویژه در کشورهای درحال‌توسعه، به درک الگو و فرایندهای پیچیدة رشد شهری با روش علمی و کارآمد نیاز دارد. لازمة ایجاد رشد شهری پایدار و برنامه‌ریزی توسعة شهری، درک الگوهای صحیح رشد شهری است. کرمانشاه نهمین شهر پرجمعیت کشور و یکی از چهار شهر نخست ایران از نظر حادبودن معضل حاشیه‌نشینی است. هدف این پژوهش، بررسی پتانسیل توسعة شهری در این شهر است. بدین­منظور،‌ ‌شبکة عصبی...

full text

طراحی شبکۀ جادۀ جنگلی با استفاده از شبکۀ عصبی مصنوعی و GIS

جاده‌های جنگلی به‌منظور ایجاد دسترسی به جنگل احداث می‌شوند و تأثیر زیربنایی در سازماندهی منطقه دارند. هدف این پژوهش، معرفی راهکاری هوشمند مبتنی بر شبکه‌های عصبی مصنوعی با تلفیق GIS برای طراحی شبکۀ جادۀ جنگلی با در نظر داشتن اصول و معیارهای فنی شبکۀ جادۀ جنگلی است. ابتدا معیارهای مؤثر با استفاده از روش دلفی شناسایی شد و وزن‌دهی آنها با استفاده از روش AHP، انجام گرفت. با تلفیق لایه‌های مختلف و وز...

full text

مدل‎سازی تغییرات پوشش سرزمین شهرستان تبریز با استفاده از شبکۀ عصبی مصنوعی و زنجیرۀ مارکف

هدف از پژوهش پیش رو، مدل­سازی تغییرات کاربری اراضی شهرستان تبریز برای سال­های 1395 و 1400 با استفاده از مدل­ساز تغییر سرزمین (LCM) در محیط سامانۀ اطلاعات جغرافیایی است. برای این کار، تجزیه‎وتحلیل و بارزسازی تغییرات کاربری­ها، به‎کمک سه دوره از تصاویر ماهوارۀ لندست مربوط به سال­های 1367، 1380 و 1390 انجام گرفت و نقشه­های پوشش اراضی جداگانه‎ای برای هر سال تهیه شد. مدل­سازی پتانسیل انتقال، به‎کمک ...

full text

سنجش کمی فنل کل انگور با استفاده از طیف‌سنجی فروسرخ نزدیک و شبکۀ عصبی مصنوعی

انگور یکی از مهم‌ترین میوه‌ها در جهان است. ترکیبات فنلی، آنتی‌اکسیدان‌هایی هستند که از اجزاء مهم انگور بشمار می‌روند. اصطلاح ترکیبات فنلی شامل تمام مولکول‌های آروماتیکی ازجمله اسیدهای آمینه تا مولکول‌های پیچیده شامل تانن‌ها و لگنین‌هاست. روش طیف‌سنجی فروسرخ نزدیک از رایج‌ترین روش‌های غیرمخرب سنجش ترکیبات و تعیین کیفیت میوه‌ها و سبزی‌هاست. در پژوهش حاضر امکان اندازه‌گیری فنل کل انگور توسط طیف‌سن...

full text

مدلسازی حجم تجاری درختان توده‌های آمیختۀ راش جنگل‌های هیرکانی با استفاده از شبکۀ عصبی مصنوعی

پیش­بینی دقیق حجم درختان سرپا برحسب متر مکعب مبنای برآورد هر چه دقیق‌تر مقدار رویش، برداشت مجاز، ترسیب کربن زی‌تودۀ هوایی درختان و مدیریت بهینۀ جنگل براساس اصل توسعۀ پایدار محسوب می‌شود. از این‌رو، تحقیق حاضر با استفاده از شبکۀ عصبی مصنوعی در پی مدلسازی و پیش‌بینی حجم تجاری با حداکثر قطعیت است. پژوهش موردی جنگل سری 3 گلندرود نور بوده و اطلاعات دریافتی مستخرج از جدول‌های تجدید حجم ادارۀ کل منابع...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 10

pages  13- 27

publication date 2014-05-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023