پیش‌بینی اسلامپ بتن با استفاده از مدل شبکه عصبی مصنوعی و روش رگرسیون چندمتغیره خطی

Authors

  • میثم عفتی استادیار گروه مهندسی عمران، دانشکده فنی، دانشگاه گیلان
Abstract:

روش‌های مختلفی جهت اندازه‌گیری کارایی بتن وجود دارد که یکی از متداول‌ترین و معمول‌ترین روش‌ها، آزمایش اسلامپ است. جهت دست‌یابی به مخلوط‌های بتنی با اسلامپ مورد نظر، باید مخلوط‌های مختلف بتنی ساخته شود و آزمایش اسلامپ بر روی آن‌ها صورت گیرد. جهت صرفه‌جویی در زمان، هزینه و مصالح بهتر است از روش‌های هوشمندی جهت پیش‌بینی اسلامپ بتن بر اساس نتایج مربوط به تعداد معینی از مخلوط‌های بتنی استفاده شود. در پژوهش حاضر روش رگرسیون چندمتغیره خطی (MLR) و مدل شبکه عصبی مصنوعی (ANN) به عنوان یکی از الگوریتم‌های محاسبات نرم جهت پیش‌بینی اسلامپ بتن مورد ارزیابی قرار گرفته و نتایج از لحاظ کاربردی بودن، دقت و کارایی مقایسه می‌شوند. مدل شبکه عصبی مورد استفاده در این مقاله از نوع پرسپترون چند لایه پیشخور با الگوریتم یادگیری پس‌انتشار است. نتایج نشان می‌دهد که مقادیر پیش‌بینی شده اسلامپ بتن توسط هر دو مدل مطلوب و قابل‌قبول می‌باشند. ضریب همبستگی، میانگین مربعات خطا و میانگین خطای مطلق در روش شبکه عصبی مصنوعی به ترتیب برابر با 9853/0 ، 485/0 و 547/0 تعیین گردید، که این مقادیر در روش رگرسیون چندمتغیره خطی به ترتیب برابر با 8681/0 ، 9696/1 و 0077/1می‌باشند. نتایج تحقیق نشان می‌دهد که در پیش‌بینی اسلامپ بتن به روش شبکه عصبی مصنوعی، مدل با یادگیری رابطه واقعی بین متغیرها اقدام به پیش بینی متغیر خروجی می‌نماید. لذا این مدل نسبت به روش رگرسیون چندمتغیره خطی دارای دقت بیش‌تری در پیش‌بینی اسلامپ بتن می‌باشد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مدل‌سازی اسلامپ و مقاومت فشاری بتن توانمند با استفاده از شبکه‌ی عصبی مصنوعی و رگرسیون خطی چندگانه

به دلیل ساختار پیچیده‌ی بتن توانمند، ارائه‌ی مدلی برای پیش‌بینی رفتار آن دشوار است. مثلاً مطالعاتی مستقلاً نشان داده‌اند که مقدار اسلامپ بتن توانمند، فقط به مقدار آب و بیشترین اندازه‌ی مصالح درشت‌دانه بستگی ندارد، بلکه مقدار آن تحت تأثیر سایر اجزاء تشکیل‌دهنده‌ی بتن نیز هست. در پژوهش حاضر، عملکرد شبکه‌های عصبی مصنوعی تغذیه‌ی رو به جلو و آبشاری رو به جلو و رگرسیون خطی چندگانه‌ی هم‌زمان و قدم به ق...

full text

تخمین سرعت نفوذپذیری پایه با استفاده از مدل‌های نروفازی، شبکه عصبی و رگرسیون خطی چندمتغیره

ننفوذ یکی از مهم‌ترین مشخصه‌های فیزیکی خاک است که اندازه‌گیری مستقیم آن دشوار، زمان‌بر و پرهزینه می‌باشد. هدف از این پژوهش تخمین سرعت نفوذپذیری پایه با استفاده مدل‌های نروفازی، شبکة مصنوعی و رگرسیون خطی چند متغیره است. بدین منظور، در 100 نقطه در منطقه دهگلان استان کردستان سرعت نفوذپذیری پایه با استفاده از استوانه مضاعف اندازه‌گیری شد. ویژگی‌های فیزیکی خاک (تخلخل، جرم ویژه ظاهری، شن، سیلت و رس) ...

full text

پیش‌بینی سیل با استفاده از شبکه عصبی مصنوعی و رگرسیون چندمتغیره غیرخطی (مطالعه موردی: طالقان)

با توجه به کمبود ایستگاه‌های اندازه‌گیری در کشور، لزوم استفاده از مدل‌های تجربی برآورد دبی‌ حداکثر لحظه‌ای بسیار ضروری است. در این پژوهش از دو مدل شبکه عصبی و رگرسیون چندمتغیره غیرخطی برای پیش‌بینی دبی اوج در حوزة آبخیز طالقان استفاده گردید. با استفاده از آمار دبی‌های متوسط حداکثر روزانه و بارش‌های متناظر، یک روز قبل و پنج روز قبل و مجموع بارندگی پنج روزه و همچنین دمای میانگین ماهانه در واحدهای...

full text

واکاوی کارایی روش های مبتنی بر شبکه های عصبی مصنوعی و رگرسیون خطی چندمتغیره در پیش بینی کشند

پیش‌بینی تغییرات کشند، به‌دلیل اهمیتی که در برنامه‌ریزی‌های ناوگان دریایی و نظامی، حمل و نقل و کشتیرانی، طراحی بنادر و سایر مسایل مرتبط با امور دریا دارد؛ از دیرباز مورد توجه بوده است. هدف این مطالعه بررسی عملکرد مدل‌های شبکه‌های عصبی پیش‌خور با 3 الگوریتم یادگیری کاهش شیب، شیب مزدوج و لونبرگ-مارکوارد در پیش‌بینی ساعتی تغییرات کشند است. به‌علاوه در تحقیق حاضر، نتایج حاصل از مدل رگرسیون خطی چندم...

full text

تخمین مدول الاستیسیته سنگ بکر با استفاده از شبکه عصبی مصنوعی و رگرسیون غیر خطی

مدول الاستیسیته سنگ بکر یکی از ملزومات اساسی بسیاری از مطالعات ژئومکانیکی و به ویژه پروژه های حفاری سنگ می باشد. برای تعیین مستقیم مدول الاستیسیته نمونه مغزه‌های باکیفیت بالا و هندسه مناسب مورد نیاز بوده و تهیه نمونه‌های مناسب از سنگ‌های شکسته و هوازده برای این منظور به آسانی امکان­پذیر نیست. بنابراین مدل‌های پیش­بینی مدول الاستیسیته براساس خصوصیات شاخص سنگ بکر ارائه گردیده­اند. در این مطالعه ب...

full text

پیش بینی سیل با استفاده از شبکه عصبی مصنوعی و رگرسیون چندمتغیره غیرخطی (مطالعه موردی: طالقان)

با توجه به کمبود ایستگاه های اندازه گیری در کشور، لزوم استفاده از مدل های تجربی برآورد دبی حداکثر لحظه ای بسیار ضروری است. در این پژوهش از دو مدل شبکه عصبی و رگرسیون چندمتغیره غیرخطی برای پیش بینی دبی اوج در حوزة آبخیز طالقان استفاده گردید. با استفاده از آمار دبی های متوسط حداکثر روزانه و بارش های متناظر، یک روز قبل و پنج روز قبل و مجموع بارندگی پنج روزه و همچنین دمای میانگین ماهانه در واحدهای ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 3

pages  118- 130

publication date 2017-11-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023