پهنه بندی خطر زمین لغزش با استفاده از شبکه عصبی مصنوعی در بخشی از حوزه آبخیز هراز

Authors

  • حمید رضا مرادی دانشیار گروه مهندسی آبخیزداری، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس
  • علیرضا سپه وند گروه مهندسی مرتع و آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه لرستان، خرم آباد، لرستان، ایران
  • پرویز عبدالمالکی دانشیار گروه بیوفیزیک، دانشکده علوم زیستی، دانشگاه تربیت مدرس
Abstract:

بخش بزرگی از کشور ایران را مناطق کوهستانی تشکیل می­دهد. هر ساله زمین­لغزش موجب خسارت به انواع سازه­های مهندسی، مناطق مسکونی، جنگل­ها و در پی آن ایجاد رسوب و سیلاب­های گل­آلود و در نهایت پر شدن مخازن سد­ها می‌گردد. از آن­جا که پیش­بینی زمان و مکان رخداد زمین­لغزش از توان دانش فعلی بشر خارج است، برای بیان حساسیت دامنه­ها، به پهنه­بندی خطر زمین­لغزش در مناطق مختلف می­پردازند. در این تحقیق برای پهنه­بندی خطر وقوع زمین­لغزش از شبکه عصبی مصنوعی و با استفاده از 9 عامل، شیب، جهت شیب، فاصله از رودخانه، زمین شناسی، فاصله از گسل، فاصله از جاده، کاربری اراضی، طبقات ارتفاعی و بارش استفاده شد. به این منظور از 78 نقطه لغزشی و 78 نقطه غیر لغزشی مشخص شده در منطقه، 3/2 برای مدل­سازی و 3/1 برای آموزش مدل استفاده شد. ابتدا نقشه رقومی هر یک از عوامل مذکور در محیط نرم­افزار GIS تهیه و سپس ارزش طبقات هر عامل با استفاده از روش نسبت فراوانی تعیین گردید. برای ورود به محیط نرم­افزار MATLAB ابتدا اطلاعات مربوط به هر پیکسل مشخص شد. در این تحقیق برای آموزش شبکه از الگوریتم پس انتشار خطا و تابع فعال­سازی سیگموئیدی استفاده شد. نتایج بیانگر این موضوع بود که شبکه عصبی با ساختار 1-14-9 و با ضریب یادگیری 1/0 دارای ریشه میانگین مربعات خطا برابر 051/0 است. دقت شبکه در مرحله آموزش و آزمایش برابر 307/92 درصد و ضریب تبیین آن برابر 962/0 بود. علاوه بر این نتایج نشان داد که 63/13 درصد از مساحت منطقه در طبقه با خطر خیلی زیاد قرار گرفته است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پهنه بندی خطر زمین لغزش با استفاده از شبکه عصبی مصنوعی مطالعه موردی: حوضه کشوری (نوژیان)

حوضه آبریز کشوری در جنوب شرقی شهر خرم آباد در استان لرستان قرار دارد. این حوضه از نظر تقسیم بندی زمین ساخت ایران در زاگرس چین خورده قرار می گیرد. با توجه به نوع سازند های زمین شناسی، وضعیت توپوگرافی و وسعت آن، این حوضه از پتانسیل لغزش بالایی برخوردار بوده و از نظر لغزشی ناپایدار است. در این تحقیق برای پهنه بندی خطر زمین لغزش در این حوضه از روش شبکه عصبی مصنوعی با ساختار پرسپترون چند لایه و الگو...

full text

پهنه بندی حساسیت زمین لغزش با استفاده از شبکه عصبی مصنوعی در بخشی از حوزه آبخیز هراز

چکیده بخش بزرگی از کشور ایران را مناطق کوهستانی تشکیل می دهد، لذا هر ساله زمین لغزش موجب خسارت به انواع سازه های مهندسی، مناطق مسکونی و جنگل ها در پی آن ایجاد رسوب و سیلاب های گل آلود و در نهایت باعث پر شدن مخازن سد ها می گردد. از آن جا که پیش بینی زمان و مکان رخداد زمین لغزش از توان دانش فعلی بشر خارج است لذا برای بیان حساسیت دامنه ها به پهنه بندی خطر زمین لغزش در مناطق مختلف می-پردازند. هدف ...

15 صفحه اول

پهنه بندی خطر زمین لغزش با استفاده از روش شبکه عصبی مصنوعی(مطالعة موردی: حوزه سپیددشت، لرستان)

این تحقیق با هدف پهنه‌بندی خطر نسبی ناپایداری دامنه­ای و وقوع زمین لغزش در حوزه سپیددشت با استفاده از روش شبکه عصبی مصنوعی با ساختار پرسپترون چندلایه و الگوریتم یادگیری پس انتشار خطا صورت گرفته است. به منظور بررسی پایداری دامنه‌ها در این حوزه ابتدا لغزش­های حوزه با استفاده از تصاویر ماهواره‌ای TM و +ETM، عکس­های هوایی 1:50000 منطقه و بازدیدهای میدانی (سال 1393) شناسایی و ثبت گردیدند. با قطع نقش...

full text

پهنه بندی خطر زمین لغزش با استفاده از اپراتور فازی گاما (مطالعه موردی: حوزه آبخیز هراز)

محدودیت استفاده از اعداد محققین را بر آن داشته که از مجموعه های فازی برای بیان وزن عوامل استفاده کنند. مزیت این تئوری در آن است که به جای یک عدد، دامنهای از اعداد با درجه امکان مشارکت در لغزش در نظر گرفته میشود. لذا هنگامی که از تئوری مجموعه های فازی برای بیان وزن عوامل استفاده میشود به طور قطع و یقین یک عدد به عنوان وزن تعیین نمیگردد، بلکه تنها امکان صحیح بودن عدد ارائه شده بیش از امکان صحیح ب...

full text

پهنه بندی خطر زمین لغزش با استفاده از شبکه عصبی مصنوعی مطالعه موردی: حوضه کشوری (نوژیان)

حوضه آبریز کشوری در جنوب شرقی شهر خرم آباد در استان لرستان قرار دارد. این حوضه از نظر تقسیم بندی زمین ساخت ایران در زاگرس چین خورده قرار می گیرد. با توجه به نوع سازند های زمین شناسی، وضعیت توپوگرافی و وسعت آن، این حوضه از پتانسیل لغزش بالایی برخوردار بوده و از نظر لغزشی ناپایدار است. در این تحقیق برای پهنه بندی خطر زمین لغزش در این حوضه از روش شبکه عصبی مصنوعی با ساختار پرسپترون چند لایه و الگو...

full text

پهنه بندی خطر زمین لغزش با استفاده از روش شبکه عصبی مصنوعی(مطالعه موردی: حوزه سپیددشت، لرستان)

این تحقیق با هدف پهنه بندی خطر نسبی ناپایداری دامنه­ای و وقوع زمین لغزش در حوزه سپیددشت با استفاده از روش شبکه عصبی مصنوعی با ساختار پرسپترون چندلایه و الگوریتم یادگیری پس انتشار خطا صورت گرفته است. به منظور بررسی پایداری دامنه ها در این حوزه ابتدا لغزش­های حوزه با استفاده از تصاویر ماهواره ای tm و +etm، عکس­های هوایی 1:50000 منطقه و بازدیدهای میدانی (سال 1393) شناسایی و ثبت گردیدند. با قطع نقش...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 29  issue 4

pages  9- 19

publication date 2017-02-19

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023