مقایسه کارآیی شبکه‌های عصبی CANFIS، MLP و MLP بهینه ‌شده به روش ژنتیک در شبیه‌سازی رسوب معلق رودخانه (مطالعه موردی: حوزه آبخیز زشک- ابرده، شاندیز)

Authors

Abstract:

     In this study, the predictive performance of three Artificial Neural Networks (ANNs), i.e. Co-Active NeuroFuzzy Inference System (CANFIS), Multi-Layer Perceptron (MLP) and MLP integrated with Genetic Algorithm (GA) in the Zoshk-Abardeh watershed were compared. In this study, three scenarios were considered and simulated in each model. In order to simulate the scenario S1 water flow were fed into the network as input. Daily water discharge and rainfall depth were considered as the input for the scenario S2. The scenario S3 was simulated based on the water discharge, daily rainfall and temperature as the inputs. In all scenarios daily sediment load was considered as the network output. Results showed that the optimum architecture for the S3_CANFIS (as the best network) was based on the Bell membership function, hyperbolic tangent transfer function and the Levenberg-Marquardt training algorithm. The S3_CANFIS with the lower MSE and NMSE acted better as compared with other scenarios during the testing process. This scenario based on the NSE equal to 0.743 and the AM equal to 0.806 showed better performance, as well. The results also suggest that the S2_MLP with 5 neurons in two hidden layers, sigmoid transfer function and the momentum learning algorithm with NSE and AM equal to 0.604 and 0.626, respectively acted better as compared with other MLP scenarios. Since the MLP network compared with CANFIS showed weaker performance in sediment yield simulation, the GA was integrated with MLP to determine the optimal network architecture parameters for the S2_MLP. Results showed that GA-MLP with NSE and AM equal to 0.658 and 0.655, respectively led to a higher capability for sediment load simulation in comparison with MLP network. Totally, the S3_CANFIS according to the criteria MB equal to -0.043, NSE equal to 0.743 and AM equal to 0.806 showed better performances in predicting sediment yield than the other networks in the studied watershed. However, both networks did not show a satisfactory power in sediment load simulation which could be arisen from the lack of data (especially extreme data) in the training series and also the existence of systematic error in observed records.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مقایسه مدل‌های شبکه عصبی مصنوعی و منحنی سنجه رسوب در شبیه‌سازی میزان رسوب معلق؛ مطالعه موردی حوزه آبخیز شاهرود

این پژوهش با هدف مقایسه کارآیی برخی مدل‌های شبیه­سازی میزان رسوب معلق شامل منحنی سنجه رسوب و شبکه عصبی مصنوعی و ارائه مدل بهینه بر اساس دبی جریان در حوزه آبخیز شاهرود و بر روی ایستگاه­های هیدرومتری گلینک، باغکلایه، لوشان و رجائی دشت انجام شد. به منظور شبیه­سازی میزان رسوب معلق از مدل منحنی سنجه رسوب یک خطی و مدل­های شبکه عصبی پرسپترون چند لایه و تابع پایه شعاعی بهره گرفته و سپس ارزیابی این مدل­...

full text

استفاده از رواناب‌های سطوح سنگی در آبیاری تکمیلی (مطالعه موردی: حوضه آبخیز زشک- ابرده شهرستان طرقبه-شاندیز)

روش استحصال آب با استفاده از رواناب ها از جمله راهکارهایی است که از عامل ریسک در کشور کاسته و از پایداری و ثبات بیشتری در عملکرد محصول در مناطق خشک و نیمه خشک برخوردار می باشد. در این مقاله سعی شده پتانسیل استفاده از رواناب­های مناطق توده سنگی بالای 90 درصد در منطقه زشک – ابرده برای آبیاری تکمیلی نهال های قابل کشت تحلیل شود. بر اساس این بررسی اگر میزان رواناب های حاصله فقط در 4 ماه (خرداد، تیر،...

full text

مناسب ترین روش آماری برآورد رسوب معلق رودخانه جاجرود (مطالعه موردی: ایستگاه رودک حوزه آبخیز جاجرود)

مواد رسوبی که توسط رودخانه­ها حمل می­شوند مشکلات بسیاری را بوجود می­آورند مانند: رسوبگذاری در مخازن و کاهش ظرفیت مخزن، ایجاد جزایر رسوبی در مسیر رودخانه­ها، تخریب سازه­های رودخانه­ای، انتقال آلودگی، لذا برآورد دقیق میزان رسوب در مسائلی نظیر امور مهندسی رودخانه، طراحی مخازن، انتقال رسوب، تعیین خسارتهای ناشی از رسوبگذاری به محیط زیست و تعیین تأثیرات مدیریت آبخیز کاملا ضروری است. با توجه به اینکه ...

full text

بهینه سازی شبکه عصبی MLP با استفاده از الگوریتم ژنتیک موازی FinGrain برای تشخیص سرطان سینه

امروزه استفاده از سیستم‌های هوشمند در تشخیص پزشکی به تدریج در حال افزایش است. این سیستم‌ها می‌توانند به کاهش خطایی که ممکن است توسط کارشناسان کم‌تجربه اتفاق بیافتد، کمک کند. بدین منظور استفاده از سیستم‌های هوشمند مصنوعی در پیش‌بینی و تشخیص سرطان سینه که یکی از رایج‌ترین سرطان‌ها در بین زنان است، مورد توجه می‌باشد. در این تحقیق فرآیند تشخیص بیماری سرطان سینه با یک رویکرد دو مرحله‌ای انجام...

full text

مقایسه روش های هوش مصنوعی در برآورد بار معلق رسوب (مطالعه موردی: رودخانه سیستان)

سابقه و هدف: برآورد صحیح حجم رسوبات معلق در رودخانه‌ها، یکی از مهم‌ترین مسائل در پروژه‌های مهندسی رودخانه، منابع آب و محیط‌زیست می‌باشد. رودخانه سیستان شاخه اصلی منشعب از رودخانه هیرمند بوده که وظیفه آبیاری 70 درصد زمین‌های کشاورزی دشت سیستان و همچنین تأمین بخشی از آب هامون هیرمند را به عهده دارد. با توجه به مشکلات زیاد ناشی از رسوبات در رودخانه‌ها، محققین علم رسوب تلاش‌های زیادی به‌منظور دستیا...

full text

مقایسه میزان کارآیی شبکه عصبی مصنوعی و مدل‌های ‏رگرسیونی، منحنی‌سنجه رسوب در برآورد ‏رسوب معلق روزانه

تعیین میزان فرسایش خاک و بار رسوبی رودخانه عملاً کاری مشکل است؛ بنابراین روش های مختلفی برای آن ها پیشنهاد شده است. یکی از روش های نوین در حل مسائل مهندسی آب و همچنین برآورد رسوب معلق رودخانه ها، استفاده از شبکه عصبی مصنوعی است که با الگو برداری از شبکه مغز انسان، ضمن اجرای فرآیند آموزش، روابط درونی بین داده ها را کشف کرده و به موقعیت های دیگر تعمیم می دهد. هدف از انجام این تحقیق، بررسی کارآیی ر...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 17

pages  119- 131

publication date 2018-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023