مقایسه میزان کارآیی شبکه عصبی مصنوعی و مدلهای رگرسیونی، منحنیسنجه رسوب در برآورد رسوب معلق روزانه
author
Abstract:
تعیین میزان فرسایش خاک و بار رسوبی رودخانه عملاً کاری مشکل است؛ بنابراین روش های مختلفی برای آن ها پیشنهاد شده است. یکی از روش های نوین در حل مسائل مهندسی آب و همچنین برآورد رسوب معلق رودخانه ها، استفاده از شبکه عصبی مصنوعی است که با الگو برداری از شبکه مغز انسان، ضمن اجرای فرآیند آموزش، روابط درونی بین داده ها را کشف کرده و به موقعیت های دیگر تعمیم می دهد. هدف از انجام این تحقیق، بررسی کارآیی روش شبکه عصبی مصنوعی در برآورد رسوب معلق روزانه نسبت به مدل های رگرسیونی (منحنی سنجه رسوب) است. بدین منظور، ابتدا آمار هم زمان دبی آب و دبی رسوب رودخانه شور خارستان در خروجی حوزه آبخیز، در طی یک دوره آماری 22 ساله جمع آوری گردید و پس از رفع نواقص آماری و حذف داده های پرت، از آن ها برای مدل سازی رسوب معلق روزانه با استفاده از روش شبکه عصبی و مدل رگرسیونی خطی استفاده شد. سپس نتایج به دست آمده از دو روش شبکه عصبی و مدل رگرسیون خطی (منحنی سنجه رسوب)، بر اساس معیارهای MAE ،RMSE و R2 ارزیابی شد. نتایج نشان داد که برآورد روش شبکه عصبی مصنوعی، در مقایسه با برآورد مدل رگرسیون خطی (منحنی سنجه رسوب)، دقت بالاتری دارد؛ به طوری که مقدار MAE ،RMSE و R2 برآورد شبکه عصبی به ترتیب، برابر با 19.27، 12.14 و 0.98 و برای مدل رگرسیون خطی، به ترتیب برابر با 36.84، 20.75 و 0.74 است که نشان دهنده پایین بودن خطا در مدل شبکه عصبی مصنوعی نسبت به مدل رگرسیون خطی است.
similar resources
مقایسه میزان کارآیی شبکه عصبی مصنوعی و مدل های رگرسیونی، منحنی سنجه رسوب در برآورد رسوب معلق روزانه
تعیین میزان فرسایش خاک و بار رسوبی رودخانه عملاً کاری مشکل است؛ بنابراین روش های مختلفی برای آن ها پیشنهاد شده است. یکی از روش های نوین در حل مسائل مهندسی آب و همچنین برآورد رسوب معلق رودخانه ها، استفاده از شبکه عصبی مصنوعی است که با الگو برداری از شبکه مغز انسان، ضمن اجرای فرآیند آموزش، روابط درونی بین داده ها را کشف کرده و به موقعیت های دیگر تعمیم می دهد. هدف از انجام این تحقیق، بررسی کارآیی ر...
full textمقایسه کارآیی مدل سنجه رسوب و شبکه عصبی مصنوعی در برآورد بار کف رودخانهها
به دلیل مشکلات نمونهبرداری و عدم دقّت کافی معادلات تجربی، سنجش و گزینش مناسبترین روشهای برآورد رسوبات بار کف، اهمّیّت زیادی دارد.هدف پژوهش حاضر، مقایسة کارآیی مدلهای آماری شبکة عصبی مصنوعی و منحنی سنجة رسوب در برآورد رسوبات بار کف است؛ بدین منظور، ابتدا 5 ایستگاه هیدرومتری دارای بیشترین تعداد نمونه انتخاب شدند؛ سپس منحنی سنجة رسوب و مدل شبکة عصبی مصنوعی با 70% دادههای آنها ساخته و ارزیابی دقّت...
full textمقایسه مدلهای شبکه عصبی مصنوعی و منحنی سنجه رسوب در شبیهسازی میزان رسوب معلق؛ مطالعه موردی حوزه آبخیز شاهرود
این پژوهش با هدف مقایسه کارآیی برخی مدلهای شبیهسازی میزان رسوب معلق شامل منحنی سنجه رسوب و شبکه عصبی مصنوعی و ارائه مدل بهینه بر اساس دبی جریان در حوزه آبخیز شاهرود و بر روی ایستگاههای هیدرومتری گلینک، باغکلایه، لوشان و رجائی دشت انجام شد. به منظور شبیهسازی میزان رسوب معلق از مدل منحنی سنجه رسوب یک خطی و مدلهای شبکه عصبی پرسپترون چند لایه و تابع پایه شعاعی بهره گرفته و سپس ارزیابی این مدل...
full textگزارش فنی: مدل شبکه عصبی مصنوعی پرسپترون چند لایه برای پیشبینی دبی روزانه بار معلق رسوب و ارزیابی عوامل موثر در برآورد رسوب
پیشبینی مقدار رسوب در طرحهای مهندسی منابع آب نظیر تأسیسات تنظیم و انحراف جریان و سدهای مخزنی از عوامل مهم در تعیین عمر مفید و بررسی عملکرد آنها است. در این تحقیق مدلی برای تخمین دبی روزانه رسوب، با استفاده از مدل شبکه عصبی پرسپترون چند لایه با الگوریتم یادگیری پس انتشار خطا ارائه شد و عملکرد مدل با مدل رگرسیون غیرخطی چند متغیره و منحنیسنجه رسوب در مراحل آموزش و آزمون مقایسه شد. بدین منظ...
full textMy Resources
Journal title
volume 1 issue 4
pages 240- 247
publication date 2010-01-21
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023