مقایسه مدلهای شبکه عصبی مصنوعی و منحنی سنجه رسوب در شبیهسازی میزان رسوب معلق؛ مطالعه موردی حوزه آبخیز شاهرود
author
Abstract:
این پژوهش با هدف مقایسه کارآیی برخی مدلهای شبیهسازی میزان رسوب معلق شامل منحنی سنجه رسوب و شبکه عصبی مصنوعی و ارائه مدل بهینه بر اساس دبی جریان در حوزه آبخیز شاهرود و بر روی ایستگاههای هیدرومتری گلینک، باغکلایه، لوشان و رجائی دشت انجام شد. به منظور شبیهسازی میزان رسوب معلق از مدل منحنی سنجه رسوب یک خطی و مدلهای شبکه عصبی پرسپترون چند لایه و تابع پایه شعاعی بهره گرفته و سپس ارزیابی این مدلها با استفاده از ضریب NASH و RMSE انجام شد. نتایج حاصل از این پژوهش حاکی از آن است که در کلیه ایستگاههای هیدرومتری مورد بررسی، مدل شبکه عصبی مصنوعی در مقایسه با مدل منحنی سنجه رسوب نتایج بهتری ارائه کرد. به طوری که مدل شبکه عصبی مصنوعی پرسپترون چند لایه با تابع تحریک سیگموئید در ایستگاههای گلینک و رجاییدشت به ترتیب با RMSE، 033/1 و 825/0 تن در روز و ضریب NASH، 84/0و 839/0 و این مدل با تابع تحریک تانژانت سیگموئید در ایستگاههای باغکلایه و لوشان به ترتیب با RMSE، 799/0 و 883/0 تن در روز و ضریب NASH، 772/0 و 895/0 کارآیی بهتری در شبیهسازی میزان رسوب معلق دارد. همچنین مقایسه نتایج حاصل از دو مدل شبکه عصبی مصنوعی نشان داد که شبکههای MLPدر مقایسه با شبکههای RBF از دقت بیشتری در شبیه سازی میزان رسوب معلق برخوردارند و تنها مزیت شبکههای RBF زمان کمتر مورد نیاز برای آموزش است.
similar resources
شبیهسازی بار رسوب معلق با استفاده از روشهای شبکه عصبی مصنوعی، عصبی-فازی و منحنی سنجه رسوب در حوزه آبخیز هلیلرود
در کشورهای در حال توسعه، بهعلت مشکلات مالی و فنی بهطور معمول دادههای رسوب اندکی اندازهگیری میشوند، لذا، مدلی که بتواند با استفاده از دادههای دبی آب، میزان بار رسوبی را برآورد کند، میتواند گزینه قابل اطمینانی باشد. با توجه به کاربرد انواع مدلها در پیشبینی رسوب، این تحقیق با هدف ارائه مدل بهینه برآورد میزان رسوب معلق بر اساس دبی جریان بر روی ایستگاههای هیدرومتری بالادست رودخانه ...
full textمقایسه میزان کارآیی شبکه عصبی مصنوعی و مدل های رگرسیونی، منحنی سنجه رسوب در برآورد رسوب معلق روزانه
تعیین میزان فرسایش خاک و بار رسوبی رودخانه عملاً کاری مشکل است؛ بنابراین روش های مختلفی برای آن ها پیشنهاد شده است. یکی از روش های نوین در حل مسائل مهندسی آب و همچنین برآورد رسوب معلق رودخانه ها، استفاده از شبکه عصبی مصنوعی است که با الگو برداری از شبکه مغز انسان، ضمن اجرای فرآیند آموزش، روابط درونی بین داده ها را کشف کرده و به موقعیت های دیگر تعمیم می دهد. هدف از انجام این تحقیق، بررسی کارآیی ر...
full textمقایسه میزان کارآیی شبکه عصبی مصنوعی و مدلهای رگرسیونی، منحنیسنجه رسوب در برآورد رسوب معلق روزانه
تعیین میزان فرسایش خاک و بار رسوبی رودخانه عملاً کاری مشکل است؛ بنابراین روش های مختلفی برای آن ها پیشنهاد شده است. یکی از روش های نوین در حل مسائل مهندسی آب و همچنین برآورد رسوب معلق رودخانه ها، استفاده از شبکه عصبی مصنوعی است که با الگو برداری از شبکه مغز انسان، ضمن اجرای فرآیند آموزش، روابط درونی بین داده ها را کشف کرده و به موقعیت های دیگر تعمیم می دهد. هدف از انجام این تحقیق، بررسی کارآیی ر...
full textمقایسه روشهای شبکه های عصبی مصنوعی، فازی-عصبی تطبیقی و منحنی سنجه رسوب در برآورد رسوبات معلق رودخانه ها (مطالعه موردی: رودخانه آجی چای)
ارائه راهکاری مناسب جهت برآورد دقیق بار معلق رودخانهها در پروژههای آبی، مهندسی رودخانه و آبیاریکاربردهای فراوانی دارد. به دلیل تأثیر پارامترهای مختلف بر انتقال رسوبات در رودخانهها، تعیین معادلات حاکم برآن مشکل بوده و مدلهای ریاضی نیز در این راستا از دقت کافی برخوردار نیستند. امروزه استفاده از سیستمهایهوش مصنوعی به عنوان راهکاری جدید در تحلیل مسائل آبی، گسترش یافته است. در تحقیق حاضر منطق فازی-ع...
full textمقایسه روابط تجربی رواناب-رسوب حاصل از منحنی های سنجه رسوب و شبکه عصبی مصنوعی (مطالعه موردی: حوزه آبخیز گدارخوش، استان ایلام)
از مهمترین عوامل تصمیمگیری در احداث سازههای رودخانهای و تعیین عمق مفید سدها داشتن دادهای دقیق از میزان رسوب حمل شده توسط رودخانهها است. روشهای چندی برای محاسبه برای بار معلق رودخانهها پیشنهاد شده است. یکی از این روشها، روش هیدرولوژیکی منحنی سنجه رسوب است. از خطاهای عمده روش مذکور عدم لحاظ اختلافهای فصلی میباشد. بر این اساس هدف از تحقیق حاضر ارزیابی اثر ارائه منحنی سنجه رسوب در دوره...
full textMy Resources
Journal title
volume 7 issue 3
pages 32- 46
publication date 2017-05-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023