مقایسه قدرت پیش بینی روش شبکه عصبی مصنوعی با سایر روش های پیش‏بینی: مورد قیمت چغندرقند

Authors

  • حمید محمدی عضو هیأت علمی دانشگاه آزاد اسلامی واحد جهرم
  • سیامک پیش‏ بین عضو هیأت علمی دانشگاه آزاد اسلامی واحد جهرم
  • فرشید کفیل‏ زاده عضو هیأت علمی دانشگاه آزاد اسلامی واحد جهرم
  • محمد نقشینه ‏فرد عضو هیأت علمی دانشگاه آزاد اسلامی واحد جهرم
Abstract:

این مطالعه با هدف پیش­بینی قیمت اسمی و واقعی چغندرقند و مقایسه روش شبکه عصبی مصنوعی با سایر روش­ها صورت گرفت. پس از بررسی ایستایی سری­ها، تصادفی بودن متغیرها با استفاده از دو آزمون ناپارامتریک والد- ولفویتز و پارامتریک دوربین- واتسون بررسی شد. براساس نتایج این آزمون­ها سری قیمت اسمی چغندرقند به‏عنوان سری غیرتصادفی و قابل پیش­بینی و سری قیمت واقعی به‏عنوان سری تصادفی ارزیابی شد. دوره مطالعه نیز شامل سال­های 1384-1350 بود. الگوهای مورد استفاده برای پیش­بینی نیز شامل الگوهای خودرگرسیو (AR)، میانگین متحرک (MA)، ARIMA، تعدیل‏نمایی یگانه، تعدیل‏نمایی دوگانه، هارمونیک، ARCH و شبکه عصبی مصنوعی بود. بر اساس معیار حداقل خطای پیش‏بینی، از میان الگوهای مورد استفاده الگوی هارمونیک در مقایسه با سایر الگوها خطای کمتری داشت. مقادیر پیش­بینی شده برای سال‏های 1383 و 1384 به‏ترتیب در دامنه 396000-344000 و  448504-398000 قرار گرفت. هم‏چنین مقادیر به وقوع پیوسته برای سال­های یاد شده به‏ترتیب 387200 و 447000 می­باشد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مقایسه قدرت مدل های شبکه عصبی مصنوعی و شبکه عصبی پویا در پیش بینی نرخ ارز: کاربردی از تبدیل موجک

این مطالعه تلاشی است در جهت به­کارگیری ترکیب مدل شبکه­ی عصبی پویا و تجزیه­ی موجک جهت میسر نمودن امکان انتخاب یک الگوی بهینه جهت پیش­بینی متغیر مذکور می­باشد. جهت تحقق این مهم، از داده­های سری­زمانی ماهانه­ی نرخ ارز طی بازه­ی زمانی فروردین 1377 الی آذر 1391، که مشتمل بر 177 مشاهده بوده که از این بین، تعداد 150 مشاهده جهت مدل­سازی­ها استفاده شده و تعداد 27 مشاهده نیز جهت شبیه­سازی و یا به بیان دی...

full text

پیش بینی قیمت نفت با دو روش arima و شبکه های عصبی مصنوعی

توانایی کم­نظیر شبکه­های عصبی مصنوعی به عنوان ابزاری قدرتمند برای تحلیل و برآورد در حوزه علوم تجربی و مهندسی موجب شد تا مورد توجه اقتصاددانان قرار گیرد. در این پژوهش، پس از مرور پژوهش­های انجام­شده در مورد توانایی پیش­بینی مدل­های خود توضیح جمعی میانگین متحرک (arima)[1]و شبکه­های عصبی مصنوعی(ann)[2] به مقایسه این دو روش برای پیش­بینی قیمت روزانه نفت در دوره آوریل 1983 تا ژوئن 2005 پرداخته­ایم. ...

full text

مقایسه عملکرد مدلهای شبکه عصبی مصنوعی واتورگرسیون برداری در پیش بینی شاخص قیمت و بازده نقدی

هدف این مقاله تجزیه و تحلیل های اقتصادی، پیش بینی صحیح و دقیق متغیرهای اقتصادی است. در این زمینه، روشهای مختلفی برای پیش بینی در اقتصاد وجود دارد، که از جمله آنها میتوان به مدلهای رگرسیون ، معادلات همزمان و... اشاره کرد. مدلهای سری زمانی نیز از جمله مدلهای اقتصادی می باشند که در آن پیش بینی مقادیر سری، بیش از هر چیز به عهده خودشان گذاشته می شود اما استفاده از روش های غیر کلاسیک در شناسایی مدل و...

full text

پیش بینی تولید آبزیان دریایی در ایران با استفاده از روش ARIMA و شبکه عصبی مصنوعی

پیش­بینی پدیده­های اقتصادی ساختاری فراهم می­کند تا مدیران و مسؤلان اقتصادی را در گرفتن تصمیم‌های درست یاری ­دهد. هدف اصلی این مطالعه پیش­بینی مقدار تولید آبزیان دریایی در ایران است. برای این منظور از روش­های سری زمانی خود توضیح جمعی میانگین متحرک (ARIMA)[1] و شبکه عصبی مصنوعی[2] استفاده می­شود. در این مطالعه سه ساختار گوناگون شبکه عصبی شامل شبکه عصبی پیشرو[3]، تابع پایه شعاعی[4] و المن[5] بکار ...

full text

مقایسه ی مدل های شبکه های عصبی مصنوعی و سری های زمانی برای پیش بینی قیمت گوشت مرغ در ایران

     با توجه به اهمیت پیش بینی قیمت گوشت مرغ، در تحقیق حاضر قیمت این محصول با استفاده از روش ARIMA و شبکه های عصبی مصنوعی برای افق های زمانی یک ماهه، شش ماهه و دوازده ماهه پیش بینی گردید و این فرضیه که شبکه ی عصبی در پیش بینی قیمت گوشت مرغ از کارایی بیشتری نسبت به  مدل های سری زمانی برخوردار است، مورد بررسی قرار گرفت. داده های مربوط به این متغیّر برای دوره ی  زمانی1371:1 تا 1385:11 بوده و  از شر...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 4

pages  85- 100

publication date 2009-01-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023