مقایسه روشهای طبقهبندی ماشین بردار پشتیبان و شبکه عصبی مصنوعی در استخراج کاربریهای اراضی از تصاویر ماهوارهای لندست TM
Authors
Abstract:
Land use classification and mapping mostly use remotely sensed data. During the past decades, several advanced classification methods such as neural network and support vector machine (SVM) have been developed. In the present study, Landsat TM images with 30m spatial resolution were used to classify land uses through two classification methods including support vector machine and neural network. The results showed that SVM and neural network with the total accuracy of 90.67 % and 91.67% are superior. SVM had a better performance in separating classes with similar spectral profiles. In addition, SVM showed a better performance in delineating class borders in comparison with neural network method. In summary, both SVM and neural network showed satisfactory results but the method of support vector machine proved better with a difference of 1% and 2% in overall accuracy and kappa coefficient, respectively. This was an expected outcome because SVMs are designed to locate an optimal separating hyperplane, while ANNs may not be able to locate this separating hyperplane.
similar resources
مقایسه روش های طبقه بندی ماشین بردار پشتیبان و شبکه عصبی مصنوعی در استخراج کاربری های اراضی از تصاویر ماهواره ای لندست tm
طبقه بندی و تهیه نقشه کاربری های اراضی یکی از پرکاربردترین موارد در استفاده از داده های سنجش از دور است. تعدادی از روش های پیشرفته تر طبقه بندی در دهه های گذشته توسعه پیداکرده اند که از آنها می توان به شبکه های عصبی مصنوعی و ماشین بردار پشتیبان اشاره کرد. در این مطالعه از تصاویر لندستtm باقدرت تفکیک 30 متر جهت استخراج کاربری های اراضی با استفاده از دو روش طبقه بندی شبکه عصبی مصنوعی و ماشین بردا...
full textمقایسة روش های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا در استخراج کاربری و پوشش اراضی از تصاویر لندست 8
تهیة نقشه کاربری/پوشش اراضی، برای برنامهریزی و مدیریت مکانی ضروری است. امروزه تصاویر ماهورهای و تکنیکهای سنجش از دور،به دلیل فرآهم آوردن دادههای بهنگام و قابلیت بالای آنالیز تصاویر، کاربرد گستردهای در تمامی بخشها از جمله بخشهای کشاورزی و منابع طبیعی دارند. در پژوهش حاضر طبقهبندیکنندههای شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا جهت تهیه نقشةکاربری/پوشش اراضی شهرستانهای اردبیل، ن...
full textمقایسه روش های شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا در استخراج کاربری و پوشش اراضی از تصاویر لندست ۸
تهیه نقشه کاربری/پوشش اراضی، برای برنامهریزی و مدیریت مکانی ضروری است. امروزه تصاویر ماهورهای و تکنیکهای سنجش از دور،به دلیل فرآهم آوردن دادههای بهنگام و قابلیت بالای آنالیز تصاویر، کاربرد گستردهای در تمامی بخشها از جمله بخشهای کشاورزی و منابع طبیعی دارند. در پژوهش حاضر طبقهبندیکنندههای شبکه عصبی مصنوعی، ماشین بردار پشتیبان و شیءگرا جهت تهیه نقشهکاربری/پوشش اراضی شهرستانهای اردبیل، ن...
full textمقایسه روش های شبکه عصبی و ماشین بردار پشتیبان در استخراج نقشه های کاربری و پوشش اراضی با استفاده از تصاویر لندست 8 (مطالعه موردی: حوضه صوفی چای)
تهیه نقشه کاربری و پوشش اراضی برای برنامهریزی و مدیریت منابع طبیعی امری ضروری میباشد. در این بین استفاده از دادههای سنجش از دور با توجه به ارائه اطلاعات به روز، پوشش تکراری، کمهزینه بودن در ارزیابی منابع طبیعی جایگاه خاصی دارد. لذا در این پژوهش، تصاویر لندست 8 بهعنوان داده ورودی برای تهیه نقشه کاربری اراضی در سطح 2و1 مورد استفاده قرار گرفت. در این بین، با توجه به جدید بودن این تصاویر، تصحی...
full textشناسایی گردوغبار در تصاویر ماهوارهای MODIS با استفاده از روشهای ماشین بردار پشتیبان، شبکه عصبی مصنوعی و درخت تصمیمگیری
یکی از مهمترین بلایای طبیعی که طی سالیان اخیر موردتوجه قرارگرفته، پدیدهی گردوغبار است. در سالهای اخیر این پدیده در ایران ابعاد تازهای گرفته و از یک معضل محلی، به مسئلهای ملی تبدیل شده است. شناسایی و تشخیص طوفان گردوغبار اولین مرحله در بررسی و پایش آن میباشد. این تحقیق باهدف شناسایی مناطق دارای گردوغبار از تصاویر ماهوارهای، در منطقه خاورمیانه انجام گرفته است. در بررسی پدیده گردوغبار تصاویر...
full textمقایسه روش های شبکه عصبی و ماشین بردار پشتیبان در استخراج نقشه های کاربری و پوشش اراضی با استفاده از تصاویر لندست 8 (مطالعه موردی: حوضه صوفی چای)
تهیه نقشه کاربری و پوشش اراضی برای برنامهریزی و مدیریت منابع طبیعی امری ضروری میباشد. در این بین استفاده از دادههای سنجش از دور با توجه به ارائه اطلاعات به روز، پوشش تکراری، کمهزینه بودن در ارزیابی منابع طبیعی جایگاه خاصی دارد. لذا در این پژوهش، تصاویر لندست 8 بهعنوان داده ورودی برای تهیه نقشه کاربری اراضی در سطح 2و1 مورد استفاده قرار گرفت. در این بین، با توجه به جدید بودن این تصاویر، تصحی...
full textMy Resources
Journal title
volume 19 issue 72
pages 35- 45
publication date 2015-08
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023