مدل سازی و پیش بینی کارایی بانک های دولتی و خصوصی ایران با استفاده از مدل های شبکه عصبی مصنوعی، شبکه عصبی فازی و الگوریتم ژنتیک
Authors
Abstract:
دستیابی به رشد مستمر و مداوم اقتصادی و به موجب آن توسعه اقتصادی را می توان از زمره اهدافی قلمداد نمود که تمام کشورها در پی دستیابی به آن می باشند. در این راستا بانک ها نقش بسیار مهمی در پیشرفت و توسعه اقتصادی هر کشور ایفا می نمایند. در حال حاضر با توجه به تعداد قابل توجه بانک های دولتی و خصوصی در کشور پیش بینی کارایی آن ها اهمیت ویژه ای پیدا کرده است. هدف از این پژوهش، مدلسازی و پیش بینی کارایی بانک های دولتی و خصوصی کشور با استفاده از مدل های شبکه عصبی مصنوعی، شبکه عصبی فازی و الگوریتم ژنتیک می باشد. در این پژوهش ابتدا با استفاده از مدل تحلیل پوششی داده ها و با در نظر گرفتن جمع کل دارایی ها و تعداد کل شعب به عنوان ورودی های مدل و سود و زیان خالص و مانده تسهیلات اعطایی و مطالبات به عنوان متغیرهای خروجی مدل به بررسی کارایی بانک ها در بین سال های 1386 تا 1390 پرداخته شد. در مرحله بعد، از رویکرد رگرسیون چند متغیره، شبکه عصبی مصنوعی، شبکه عصبی فازی و الگوریتم ژنتیک جهت پیش بینی کارایی بانک ها استفاده شده است. نتایج ارزیابی نشان داد که مدل شبکه عصبی فازی نسبت به سایر مدل ها دارای بالاترین دقت در پیش بینی کارایی بانک ها می باشد. همچنین بر اساس نتایج تحلیل حساسیت ورودی ها به وسیله شبکه عصبی، ورودی سود و زیان خالص به عنوان ورودی که بیشترین تاثیر در کارایی بانک ها دارد، معرفی شده است
similar resources
مدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی
شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...
full textپیش بینی مصرف انرژی بخش کشاورزی ایران با استفاده از مدل ترکیبی الگوریتم ژنتیک و شبکه های عصبی مصنوعی
هدف از این مقاله ارزیابی الگوی ترکیبی شبکههای عصبی مصنوعی و الگوریتم ژنتیک در پیش بینی تقاضای انرژی بخش کشاورزی ایران میباشد. برای این منظور، از دادههای سالانه مصرف انرژی بخش کشاورزی کشور به عنوان متغیر خروجی مدلهای پیشبینی و از دادههای سالانه جمعیت کل کشور و کل تولیدات بخش کشاورزی کشور به عنوان متغیرهای ورودی مدلهای پیشبینی استفاده شد. در پایان به منظور مقایسه نتایج پیشبینی مدل ترکیبی...
full textپیش بینی منابع مالی بانک با استفاده از مدل خطی( ARIMA) و غیرخطی شبکه های عصبی مصنوعی فازی
یکی از مهمترین موارد مورد علاقه مدیران بانکی به عنوان متغیری تأثیرگذار بر صنعت بانکداری، اطلاع از وضعیت سپردههای بانکی است که فعالیت بانک تا حد زیادی بستگی به آن دارد. ازاینرو مدیران بانکها علاقهمند هستند بدانند که میزان کل سپردههای بانک در زمان معینی در آینده چقدر خواهد بود. پیشبینی میزان سپردهها، تغییر و نوسان این سپردهها میتواند در امر برنامهریزی و تصمیمگیری به بانکها کمک نماید....
full textمدل سازی پیش بینی گردشگری ورودی به ایران با استفاده از روش هایARIMA و شبکه های عصبی فازی
صنعت گردشگری به عنوان یک صنعت پاک و اشتغالزا، در سالهای اخیر جزء درآمدزاترین صنایع جهان بوده و همواره مورد توجه سیاستها و برنامههای توسعه گرانه میباشد. دولتها و بخشهای خصوصی در سطوح کلان تا خرد جهت توسعه و بقاء در بخش گردشگری نیازمند پیشبینی تقاضا در این بخش میباشند. هر چند که اکثر مطالعات انجام گرفته جهت پیشبینی تقاضا در گردشگری از روشهای کمی استفاده کردهاند ولی رویکردها و روشهای ک...
full textپیش بینی قیمت سهام با استفاده از شبکه عصبی فازی مبتنی برالگوریتم ژنتیک و مقایسه با شبکه عصبی فازی
In capital markets, stock price forecasting is affected by variety of factors such as political and economic condition and behavior of investors. Determining all effective factors and level of their effectiveness on stock market is very challenging even with technical and knowledge-based analysis by experts. Hence, investors have encountered challenge, doubt and fault in order to invest with mi...
full textMy Resources
Journal title
volume 1 issue 2
pages 103- 126
publication date 2013-11-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023