مدلی برای پیش بینی آسیب پذیری تحصیلی در مقطع کارشناسی مبتنی بر شبکه عصبی

Authors

  • لیلا اشرفی کارشناس ارشد تحلیل سیستم حوزه معاونت آموزشی دانشگاه علم و صنعت ایران
Abstract:

هدف پژوهش حاضر، توسعه مدلی برای پیش­بینی شرایط اخراج آموزشی دانشجویان مقطع کارشناسی رشته­های مهندسی بوده که به روش داده­کاوی و با استفاده از الگوریتم شبکه عصبی به اجرا درآمده است. جامعه آماری، دربرگیرنده کلیه پذیرفته­شدگان سال­های 1387 لغایت 1390 در سه مورد از دانشگاه­های فنی و مهندسی کشور بوده است. داده­های پژوهش با بهره­برداری مستقیم از سیستم­های آموزش هر سه دانشگاه­ در مدل­سازی وارد شدند. نتایج حاکی از آن است که با   بهره­گیری از داده­های موجود در سیستم­های حوزه آموزش دانشگاه­ها و به خدمت گرفتن شبکه عصبی می­توان با صحت بیش از 95 درصد نسبت به پیش­بینی وضعیت تحصیلی یکایک دانشجویان اقدام نمود. کارآئی مدل­های حاصله در دانشگاههای مورد مطالعه، به ترتیب برابر 0.72، 0.556و 0.565 حاصل گردیدند. معدل کل، تعداد واحدهای گذرانده، تعداد نیمسال های مبادرت به   فعالیت­های فوق برنامه و تعداد نیمسال­های مشروطی قبلی به عنوان به عنوان موثرترین متغیرهای پیش­بین، توسط شبکه عصبی تشخیص داده شدند.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

شبکه های عصبی مصنوعی : مدلی برای پیش بینی

با توجه به محدودیتها و ابهامهای موجود در مدلهای متداول آماری مانند از دست دادن داده‎های مربوط به تعاملهای پیچیده و غیرخطی بین سازه‎های روان‎شناختی و برخی مفروضه‎ها مانند همگونی واریـانسها و توزیع نرمال، پژوهش حاضر توانایی مدلهای شبکه‎های عصبی مصنوعی را برای مطالعات پیش‎بینی بررسی کرد. گروه‎ نمونه‎ای شامل 456 دانش‎ ـ آموز پسر سال سوم دبیرستان پرسشنامه شخصیتی کالیفرنیا (cpi؛ گاف، 1975) و پرسشنـام...

full text

ترکیب شبکه های عصبی برای پیش بینی قیمت سهام

در این مقاله، یک مدل ابتکاری با ترکیب شبکه های عصبی مصنوعی (ANN) برای پیش بینی رفتار قیمت سهام پیشنهاد و اجرا می شود. این مدل ترکیبی، به صورت ساختار دو طبقه می باشد: شبکه های عصبی طبقه اول یا پیشگوهای پایه (Base Predictor) مسئول پیش بینی روزانه داده ها با ویژگی مختلف یک سهام می باشند و در طبقه دوم، شبکه دیگر، به عنوان ترکیب کننده پیش بینی نهایی را با بررسی و آنالیز اطلاعات پیشگوهای طبقه اول انج...

full text

ارزیابی روشهای پیش بینی قمیت سهام و ارائه مدلی غیرخطی بر اساس شبکه های عصبی

در این مقاله با استفاده از اطلاعات سری زمانی قیمت و بازده سهام چند شرکت در بازار بورس تهران، به پیش بینی قیمت سهام و نیز ارائه مدل بهینه پرداخته می شود. روشهای پیش بینی مورد استفاده در تحقیق، به سه دسته تقسیم شده اند: روشهای پیش بینی براساس مدلهای خطی (کوتاه مدت و بلندمدت)، روشهای پیش بینی براساس مدلهای غیرخطی (شبکه های عصبی غیرخطی) و مدل شبکه عصبی با ساختار پیشنهادی، در هر مورد نتایج به دست آم...

full text

کاربرد شبکه عصبی مبتنی بر الگوریتم ژنتیک در پیش بینی تقاضای بلندمدت انرژی

پیش­بینی تقاضای انرژی جهت عرضه به موقع، تنظیم بازار، هدفگذاری میزان صادرات و ایجاد امنیت انرژی اهمیت ویژه­ای دارد. روش­های مختلفی برای پیش­بینی تقاضای انرژی معرفی شده است که در این بین با توجه به روند غیرخطی و پرنوسان تقاضای انرژی، تکنیک­های غیرخطی نتایج مطلوب­تری داشته است. شبکه­های عصبی و الگوریتم ژنتیک از مهمترین و پرکاربردترین تکنیک­های غیرخطی در این زمینه می­باشند که هر یک نقاط ضعف و قوت خ...

full text

رویکردی نو در بررسی پیش بینی پذیری ترافیک شهری مبتنی بر تئوری آشوب و پیش بینی جریان ترافیک شهر مشهد مبتنی بر سیستم فازی- عصبی تطبیقی چندگانه

پیش بینی کوتاه مدت پارامترهای ترافیکی مانند جریان ترافیک، سرعت و ازدحام، دارای اهمیت بسیاری در پژوهشهای حوزه سیستمهای حمل ونقل هوشمند مدرن است. در این مقاله، ابتدا با بکارگیری تئوری آشوب به بررسی پیش‌بینی پذیری جریان ترافیک شهری پرداخته شده و غیرتصادفی بودن سری زمانی حجم ترافیک مورد بررسی قرار گرفته است. سپس، در حوزه پیش‌بینی، با توجه به این نکته که یکی از مهم‌ترین مشکلات در هنگام پیش‌بینی وضعی...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 13

pages  8- 27

publication date 2018-08-23

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023