مدلکردن و بهینه سازی سنتز آنزیمی کافئیک اسید فن اتیل استر با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک
Authors: not saved
Abstract:
در این تحقیق، واکنش کافئیک اسید و 2- فنیل اتانول در حضور لیپاز تثبیت شده از مخمر آنتارکتیکا (نووزیم 435) به منظور تولید کافئیک اسید فن اتیل استر در سیستم ایزواکتان با استفاده از روشهای شبکه عصبی مصنوعی و ژنتیک الگوریتم مدل سازی و بهینه گردید. بدین منظور ازیک طرح مرکب مرکزی چرخش پذیر با 4 متغیر و 5 سطح جهت مدل کردن واکنش آنزیمی به کمک شبکه عصبی مصنوعی استفاده شد. متغیرهای مستقل شامل دما، زمان، نسبت مولی سابستریت ها و مقدار آنزیم بوده؛ در حالیکه درصد تبدیل مولی کافئیک اسید به استر به عنوان متغیر وابسته در نظر گرفته شد. از الگوریتم لونبرگ- مارکوارت جهت آموزش شبکه عصبی مصنوعی استفاده گردید. بنابراین ابتدا مدل سازی توسط شبکه عصبی مصنوعی و با کمک الگوریتم لونبرگ– مارکوات انجام گرفت. بهترین مدل شامل یک شبکه با 4 ورودی، 10 نورون در لایه مخفی و 1 خروجی است (1-10-4). پس از مدل سازی با شبکه عصبی مصنوعی، از الگوریتم ژنتیک جهت بهینه سازی مدل استفاده شد. شرایط بهینه عبارت بودند از: زمان 60 ساعت، دما 69 درجه سانتیگراد، نسبت مولی سابستریت ها 73:1 ( کافئیک اسید: 2-فنیل اتانول) و مقدار آنزیم PLU 322 مقدار واقع و پیش بینی شده درصد تبدیل مولی کافئیک اسید به استر در این شرایط به ترتیب 98.12 و 100.54 بودند.
similar resources
مدل کردن و بهینه سازی سنتز آنزیمی کافئیک اسید فن اتیل استر با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک
در این تحقیق، واکنش کافئیک اسید و 2- فنیل اتانول در حضور لیپاز تثبیت شده از مخمر آنتارکتیکا (نووزیم 435) به منظور تولید کافئیک اسید فن اتیل استر در سیستم ایزواکتان با استفاده از روش های شبکه عصبی مصنوعی و ژنتیک الگوریتم مدل سازی و بهینه گردید. بدین منظور ازیک طرح مرکب مرکزی چرخش پذیر با 4 متغیر و 5 سطح جهت مدل کردن واکنش آنزیمی به کمک شبکه عصبی مصنوعی استفاده شد. متغیرهای مستقل شامل دما، زمان، ...
full textمدل کردن و بهینه سازی سنتز آنزیمی کافئیک اسید فن اتیل استر با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک
در این تحقیق، واکنش کافئیک اسید و 2- فنیل اتانل در حضور لیپاز تثبیت شده از کاندیدا آنتارکتیکا (نووزیم 435) به منظور تولید کافئیک اسید 2-فنیل اتیل در سیستم ایزواکتان با استفاده از روش های شبکه عصبی مصنوعی و ژنتیک الگوریتم مدل سازی و بهینه گردید. بدین منظور ازیک طرح مرکب مرکزی چرخش پذیر با 4 متغیر و 5 سطح جهت مدل کردن واکنش آنزیمی به کمک شبکه عصبی مصنوعی استفاده شد. متغیرهای مستقل شامل دما، زمان،...
مدل سازی خشک کردن اسمزی زردآلو با استفاده از الگوریتم ژنتیک - شبکه عصبی مصنوعی
ایران از نظر تولید زردآلو در جهان مقام دوم را دارد و مطالعه عوامل موثر بر خشک کردن این میوه و مقدار تاثیر آنها امری ضروری می باشد. لذا در این مطالعه تاثیر دمای محلول اسمزی در محدوده °C 25 تا °C 65، در مدت زمان 30 تا 120 دقیقه و غلظت محلول اسمزی در محدودۀ 30 تا 60 درصد (وزنی/وزنی) بر پارامترهای کاهش وزن، کاهش آب، جذب مواد جامد و نسبت دفع آب به جذب مواد جامد در طی خشک کردن اسمزی زردآلو مورد بررسی...
full textبهینه سازی شبکه عصبی MLP با استفاده از الگوریتم ژنتیک موازی FinGrain برای تشخیص سرطان سینه
امروزه استفاده از سیستمهای هوشمند در تشخیص پزشکی به تدریج در حال افزایش است. این سیستمها میتوانند به کاهش خطایی که ممکن است توسط کارشناسان کمتجربه اتفاق بیافتد، کمک کند. بدین منظور استفاده از سیستمهای هوشمند مصنوعی در پیشبینی و تشخیص سرطان سینه که یکی از رایجترین سرطانها در بین زنان است، مورد توجه میباشد. در این تحقیق فرآیند تشخیص بیماری سرطان سینه با یک رویکرد دو مرحلهای انجام...
full textمدل سازی و بهینه سازی واحد تولید هیدروژن با شبکه ی عصبی مصنوعی و الگوریتم ژنتیک
هدف اصلی این پژوهش، مدل سازی واحد صنعتی تولید هیدروژن براساس تبدیل متان با بخار آب با کاربرد شبکه ی عصبی مصنوعی است. عامل های دبی فراورده و انرژی مصرفی به عنوان عامل های خروجی مدل در نظر گرفته شد و دو شبکه ی عصبی مجزا برای پیش بینی این دو عامل مدنظر قرارگرفت. نتیجه های مدل سازی با دقت بسیار خوب، خطای متوسط مطلق، خطای متوسط نسبی و خطای احتمالی بین داده های واقعی کارخانه و مدل را به ترتیب برابر ب...
full textبررسی صفات رشد گوسفند لری با استفاده از مدلهای غیر خطی و شبکه عصبی مصنوعی بهینه شده با الگوریتم ژنتیک
زمینه مطالعاتی: در این پژوهش از اطلاعات تعداد 7054 راس گوسفند نژاد لری برای برازش منحنی رشد این نژاد استفاده شد. هدف: صفات رشد مورد بررسی شامل وزن تولد، از شیرگیری، شش ماهگی و نه ماهگی بود که با استفاده از سه مدل غیر خطی شامل گمپرتز، برودی و لجستیک و همچنین شبکه عصبی مصنوعی (ANN) برازش شد. روش کار: تیپ تولد، جنسیت، سال تولد، سن مادر و فصل تولد به همراه وزن تولد، شیرگیری و شش ماهگی به عنوان عوام...
full textMy Resources
Journal title
volume 1 issue 2
pages 41- 58
publication date 2015-05-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023