مدلسازی منطقه ای TEC با استفاده از شبکههای عصبی مصنوعی و مدل چند جملهای در ایران
Authors
Abstract:
در این مقاله از یک شبکه عصبی مصنوعی پرسپترون 3 لایه با 5 نرون در لایه مخفی جهت مدلسازی مقدار محتوای الکترون لایه یونوسفر (TEC) استفاده شده است. بدین منظور از 25 ایستگاه GPS شبکه ژئودینامیک کشور ایران در محدوده عرض جغرافیایی 24 الی 40 درجه و طول جغرافیایی 44 الی 64 درجه استفاده گردیده است. ارزیابی نتایج بدست آمده از شبکه عصبی مصنوعی مدلسازی شده برای این منطقه توسط 1 ایستگاه تست GPS که مقادیر محتوای الکترونی آن از قبل در دست بوده انجام گرفته است. به دلیل اینکه ایستگاه مورد نظر مجهز به دستگاه اندازه گیری مستقیم دانسیته الکترونی بوده (دستگاه یونوسوند) و بصورت مستقل می توان در موقعیت آن ایستگاه مقدار محتوای الکترونی را با دقت و صحت بالا بدست آورد، از این ایستگاه برای تست نتایج استفاده شده است. مینیمم خطای نسبی بدست آمده از این ارزیابی 73/0 درصد و ماکزیمم خطای نسبی66/34 درصد می باشد. همچنین جهت ارزیابی کارائی شبکه های عصبی مصنوعی در برآورد مقدار محتوای الکترون یونوسفر، در این مقاله از یک چندجمله ای مرتبه 3 با 11 ضریب جهت مدلسازی TEC استفاده شده است. مقایسه مقادیر خطای نسبی محاسبه شده برای مدل چندجمله ای با مقادیر خطای نسبی بدست آمده برای شبکه عصبی، حاکی از برتری این روش نسبت به مدل چندجمله ای در برآورد مقدار محتوای الکترون لایه یونسفر در این منطقه است. تعداد نرونهای لایه مخفی در شبکه عصبی و نیز مرتبه و تعداد ضرایب چند جمله ای مورد استفاده در این مقاله بر اساس آزمون و خطا و با در نظر گرفتن مینیمم خطای نسبی برای نتایج تعیین شده است.
similar resources
مدل سازی منطقه ای tec با استفاده از شبکه های عصبی مصنوعی و مدل چند جمله ای در ایران
در این مقاله از یک شبکه عصبی مصنوعی پرسپترون 3 لایه با 5 نرون در لایه مخفی جهت مدلسازی مقدار محتوای الکترون لایه یونوسفر (tec) استفاده شده است. بدین منظور از 25 ایستگاه gps شبکه ژئودینامیک کشور ایران در محدوده عرض جغرافیایی 24 الی 40 درجه و طول جغرافیایی 44 الی 64 درجه استفاده گردیده است. ارزیابی نتایج بدست آمده از شبکه عصبی مصنوعی مدلسازی شده برای این منطقه توسط 1 ایستگاه تست gps که مقادیر محت...
full textتشخیص آنامولی های TEC قبل از وقوع زلزله های بزرگ با استفاده از شبکه عصبی مصنوعی
وقوع زلزله علاوه بر تغییر در هندسه و فیزیک پوسته زمین تأثیرات دیگری را نیز به همراه دارد. از آن جمله، تأثیر بر لایه یونسفر می‍باشد که خود را بهصورت تغییر در میزان الکترون، چگالی یونها، میدانهای الکتریکی و مغناطیسی این لایه نشان میدهد. هر پارامتر ژئوفیزیکی و ژئوشیمیایی در لایههای لیتوسفر، اتمسفر و یونسفر زمین که قبل از وقوع زلزله تغییراتی در آن پدید آید بهعنوان پیشنشانگر شناخته میشود...
full textمدلسازی ستون تقطیر با استفاده از ساختار مدل ARX و شبکههای عصبی مصنوعی
فرآیند تقطیر یک فرآیند صنعتی پیچیده و به شدت غیرخطی میباشد. به طور کلی پیدا کردن مدل دقیق تحلیلی از ستونهای تقطیر با خلوص بالا همواره امکان پذیر نمیباشد. از طرفی توسعه مدلهای تحلیلی معمولا وقتگیر و هزینهبر است. برای غلبه بر این مشکلات میتوان از مدلهای تجربی نظیر شبکههای عصبی استفاده کرد. یکی از ایرادات اساسی شبکههای عصبی این است که پیشبینیهای آن تنها در محدوده اطلاعات شناسایی معتبر است...
full textمدلسازی ستون تقطیر با استفاده از ساختار مدل ARX و شبکههای عصبی مصنوعی
فرآیند تقطیر یک فرآیند صنعتی پیچیده و به شدت غیرخطی میباشد. به طور کلی پیدا کردن مدل دقیق تحلیلی از ستونهای تقطیر با خلوص بالا همواره امکان پذیر نمیباشد. از طرفی توسعه مدلهای تحلیلی معمولا وقتگیر و هزینهبر است. برای غلبه بر این مشکلات میتوان از مدلهای تجربی نظیر شبکههای عصبی استفاده کرد. یکی از ایرادات اساسی شبکههای عصبی این است که پیشبینیهای آن تنها در محدوده اطلاعات شناسایی معتبر است...
full textمدلسازی نفوذپذیری سیستم بیوراکتورغشایی با استفاده از شبکه عصبی مصنوعی
مدلسازی برای سیستم های پیچیده ای همچون بیوراکتور غشایی به دلیل امکان اجرای آزمایشهای مجازی زیاد در زمان کوتاه ابزاری قدرتمند است، اگرچه نیازمند اعتبار تجربی و تبدیل فرایند به مدل ریاضی می باشد. در این پژوهش به مدلسازی فرایند فیلتراسیون توسط شبکه های عصبی با استفاده از نرم افزار MATLAB 8.1 (2013) پرداخته شده و از داده های تجربی یک سیستم بیوراکتور غشایی غوطه ور مجهز به غشاء کوبوتا جهت تصفیه فاضلا...
full textMy Resources
Journal title
volume 4 issue 3
pages 51- 60
publication date 2015-02
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023