مدلسازی دماهای حداقل شهرستان ارومیه با استفاده از مدلهای رگرسیونی خطی و غیرخطی چندگانه و شبکه-های عصبی مصنوعی
Authors
Abstract:
دماهای حداقل عامل اصلی محدود کننده بسیاری از فعالیت های کشاورزی اعم از زراعت و باغداری است که هر ساله خسارات و صدمات زیادی را به محصولات کشاورزی وارد می سازد. آگاهی از احتمال وقوع این دماها برای جلوگیری از خسارت احتمالی، دارای اهمیت بسزایی است. در برنامه ریزی های مختلفی که در ارتباط با اقلیم شناسی است، اقلیم شناسان سعی میکنند با تجزیه و تحلیل داده های یک یا چند متغیر اقلیمی در گذشته، به اصول، قوانین و مدل هایی دست یابند که بر این اساس وضعیت آن را در آینده پیشبینی کنند. از روشهای مهم در این زمینه مدلهای رگرسیونی و شبکههای عصبی مصنوعی از مولفه های هوش مصنوعی است که امروزه به طور وسیع در زمینه مدلسازی و پیشبینی پارامترهای اقلیمی مورد استفاده قرار میگیرد. در این پژوهش امکان مدلسازی و پیشبینی دماهای حداقل شهرستان ارومیه با استفاده از این مدلها مورد بررسی و تجزیه تحلیل قرار گرفت. بدین منظور از متغیرهای میانگین حداکثر رطوبت نسبی، میانگین سرعت باد، میانگین مجموع بارش، میانگین حداقل و حداکثر دمای دوره آماری 26 ساله (2000-1975) جهت پیشبینی دماهای حداقل5 ساله (2005-2001) و مقایسه آن با دادههای واقعی استفاده گردید. بدین منظور از امکانات و توابع موجود در نرم افزارهای MATLAB/2010 و SPSS/21 بهرهگرفته شد و برای هر ماه یک مدل با خطای کمتر از 5 درصد طراحی گردید. سپس به بررسی شاخص عملکرد مدلها از طریق معیارهای آماری از جمله ضریب تعیین، مجذور میانگین مربعات خطا، میانگین مربعات خطا، میانگین مطلق خطا، میانگین درصد نسبی خطا و ضریب همبستگی پرداخته شد. نتایج حاصل، ضمن مدلسازی پیشبینی دماهای حداقل، نشان داد که خطای حداکثر مدلهای شبکه عصبی مصنوعی، رگرسیون خطی و غیرخطی با دادههای واقعی به ترتیب برابر 85/0، 06/3 و 26/3 درجه سلسیوس است که توانایی قابل توجه مدل شبکه عصبی مصنوعی در پیشبینی دماهای حداقل در مقایسه با مدلهای رگرسیونی را نشان میدهد. از این رو با استفاده از این مدلها میتوان وضعیتهای دمایی را از قبل تعریف نموده و در مدیریت منابع و برنامهریزیهای محیطی دخالت داد. از نتایج حاصله میتوان در اجرای روشهای مقابله با سرما و یخبندان در زمینههای مختلف مدیریت منابع سوخت، کشاورزی و ماشین آلات کشاورزی، سیستمهای آبیاری و خطوط انتقال آب، بیماریها، حمل و نقل و تصادفات جادهای و غیره بهره گرفت.
similar resources
مدل سازی دماهای حداقل شهرستان ارومیه با استفاده از مدل های رگرسیونی خطی و غیرخطی چندگانه و شبکه-های عصبی مصنوعی
دماهای حداقل عامل اصلی محدود کننده بسیاری از فعالیت های کشاورزی اعم از زراعت و باغداری است که هر ساله خسارات و صدمات زیادی را به محصولات کشاورزی وارد می سازد. آگاهی از احتمال وقوع این دماها برای جلوگیری از خسارت احتمالی، دارای اهمیت بسزایی است. در برنامه ریزی های مختلفی که در ارتباط با اقلیم شناسی است، اقلیم شناسان سعی می کنند با تجزیه و تحلیل داده های یک یا چند متغیر اقلیمی در گذشته، به اصول، ...
full textپیش بینی سیلاب در زمان واقعی با استفاده از مدلهای رگرسیونی و شبکه های عصبی مصنوعی (مطالعه موردی)
full text
مدلسازی عرض عملیات خاکی جاده های جنگلی با استفاده از شبکه عصبی مصنوعی و رگرسیون خطی چندگانه
عرض عملیات خاکی، به عنوان یکی از مهم ترین پارامترهای تعیین کننده حجم خاکبرداری و خاکریزی، در هزینه و تخریب ناشی از عملیات جاده سازی در جنگل مؤثر است. هدف از این پژوهش بررسی امکان پیش بینی عرض عملیات خاکی جاده های جنگلی است. برای نیل به این هدف دو روش شبکه عصبی مصنوعی و رگرسیون خطی چندگانه بکار گرفته شده است. برای این منظور، 192 مقطع عرضی در جادههای جنگلی سوردار-واتاشان مورد بررسی قرار گر...
full textپیش بینی منابع مالی بانک با استفاده از مدل خطی( ARIMA) و غیرخطی شبکه های عصبی مصنوعی فازی
یکی از مهمترین موارد مورد علاقه مدیران بانکی به عنوان متغیری تأثیرگذار بر صنعت بانکداری، اطلاع از وضعیت سپردههای بانکی است که فعالیت بانک تا حد زیادی بستگی به آن دارد. ازاینرو مدیران بانکها علاقهمند هستند بدانند که میزان کل سپردههای بانک در زمان معینی در آینده چقدر خواهد بود. پیشبینی میزان سپردهها، تغییر و نوسان این سپردهها میتواند در امر برنامهریزی و تصمیمگیری به بانکها کمک نماید....
full textبرآورد دمای خاک از دادههای هواشناسی با استفاده از مدلهای یادگیری ماشین سریع، شبکه عصبی مصنوعی و رگرسیون خطی چندگانه
دمای خاک عامل کلیدی است که فرآیندها و خصوصیات فیزیکی، شیمیایی و بیولوژیکی خاک را کنترل میکند؛ لذا بر کمیت و کیفیت تولید محصولات کشاورزی تأثیر میگذارد. هدف از انجام این پژوهش برآورد دمای خاک با استفاده از پارامترهای هواشناسی به روشهای مختلف ماشین یادگیری بوده است. بدین منظور دادههای هواشناسی و دمای خاک در عمقهای 5، 10، 20، 30، 50 و 100 سانتیمتری از 17 ایستگاه سینوپتیک استان خوزستان مربوط ...
full textمدلسازی نفوذپذیری سیستم بیوراکتورغشایی با استفاده از شبکه عصبی مصنوعی
مدلسازی برای سیستم های پیچیده ای همچون بیوراکتور غشایی به دلیل امکان اجرای آزمایشهای مجازی زیاد در زمان کوتاه ابزاری قدرتمند است، اگرچه نیازمند اعتبار تجربی و تبدیل فرایند به مدل ریاضی می باشد. در این پژوهش به مدلسازی فرایند فیلتراسیون توسط شبکه های عصبی با استفاده از نرم افزار MATLAB 8.1 (2013) پرداخته شده و از داده های تجربی یک سیستم بیوراکتور غشایی غوطه ور مجهز به غشاء کوبوتا جهت تصفیه فاضلا...
full textMy Resources
Journal title
volume 6 issue 12
pages 1- 33
publication date 2012-10-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023