مدل‌سازی استخراج روغن از دانه‌ کتان با پیش تیمار میدان الکتریکی پالسی با استفاده از شبکه عصبی مصنوعی

Authors

  • شکوفه غراوی گروه صنایع غذایی، واحد گنبد کاووس، دانشگاه آزاد اسلامی، گنبد کاووس، ایران
  • معصومه مقیمی گروه صنایع غذایی، واحد گنبد کاووس، دانشگاه آزاد اسلامی، گنبد کاووس، ایران
Abstract:

دانه کتان یکی از منابع تأمین کننده روغن می باشد که به دلیل میزان بالای اسید چرب ضروری امگا3 مورد توجه قرار گرفته است. در تکنولوژی استخراج روغن، تیماردهی مناسب دانه قبل از استخراج یکی از مهمترین مراحل برای تولید محصولی با کیفیت و راندمان بالا می باشد. در تحقیق حاضر به منظور مد‌‌ل‌سازی فرآیند استخراج روغن دانه‌های کتان به کمک پیش تیمار میدان الکتریکی پالسی، از شدت های 0/5، 3/5 و 6/5 کیلوولت بر سانتی‌متر و سرعت های 11، 22 و 33 دور در دقیقه پرس مارپیچی استفاده شد و میزان راندمان استخراج، اسیدیته، دانسیته، رنگ، ضریب شکست، پراکسید و اندیس اسیدی روغن استخراج شده مورد بررسی قرار گرفت. جهت پیش‌بینی روند تغییرات از ابزار شبکه‌های عصبی مصنوعی در نرم‌افزار Matlab R2013a استفاده شد. نتایج نشان داد که با افزایش شدت میدان الکتریکی پالسی و افزایش سرعت دورانی پرس، راندمان استخراج روغن، شاخص رنگ، دانسیته، اسیدیته و اندیس اسیدی افزایش یافت. همچنین افزایش شدت میدان الکتریکی پالسی تاثیر معنی داری بر ضریب شکست و میزان پراکسید نداشت در حالی که با افزایش سرعت پرس میزان پراکسید افزایش یافت. با بررسی شبکه های مختلف، شبکه پیش‌خور با توپولوژی 7-10-2 با ضریب همبستگی بیش از 0/9843 و میانگین مربعات خطا برابر با 0/0001 و با به کارگیری تابع فعال‌سازی لگاریتم سیگموئیدی، الگوی یادگیری لونبرگ _مارکوات و چرخه یادگیری 1000 به عنوان بهترین مدل عصبی مشخص گردید. در نهایت با توجه به نتایج مشخص شد که اعمال پیش تیمار میدان الکتریکی پالسی با شدت 6/5 کیلوولت بر سانتی‌متر و سرعت پرس 22 دور در دقیقه منجر به تولید محصول با راندمان مناسب و خصوصیات فیزیکوشیمیایی مطلوب‏تر گردید.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مدل‌سازی استخراج روغن از دانۀ کتان به کمک پیش‌تیمار مایکروویو با استفاده از شبکه‌های عصبی مصنوعی

در تکنولوژی استخراج روغن، تیماردهی مناسب دانه قبل از استخراج یکی از مهم‌ترین و ضروری‌ترین مراحل برای تولید محصولی با کیفیت و راندمان بالاست. در این تحقیق به‌منظور مدل‌سازی فرایند استخراج روغن از دانه‌های کتان به کمک پیش‌تیمار مایکروویو از زمان‌های مختلف فرایند (90، 180 و 270 ثانیه) و توان‌های مختلف (180، 540 و 900 وات) استفاده گردید و میزان راندمان استخراج، اسیدیته، ضریب شکست، دانسیته، عدد اسید...

full text

مدلسازی نفوذپذیری سیستم بیوراکتورغشایی با استفاده از شبکه عصبی مصنوعی

مدلسازی برای سیستم های پیچیده ای همچون بیوراکتور غشایی به دلیل امکان اجرای آزمایشهای مجازی زیاد در زمان کوتاه ابزاری قدرتمند است، اگرچه نیازمند اعتبار تجربی و تبدیل فرایند به مدل ریاضی می باشد. در این پژوهش به مدلسازی فرایند فیلتراسیون توسط شبکه های عصبی با استفاده از نرم افزار MATLAB 8.1 (2013) پرداخته شده و از داده های تجربی یک سیستم بیوراکتور غشایی غوطه ور مجهز به غشاء کوبوتا جهت تصفیه فاضلا...

full text

پیش بینی اثر پارامترهای جوش قوس الکتریکی بر هندسه جوش با استفاده از شبکه عصبی مصنوعی

در این مقاله، شبیه سازی روابط بین پارامترها و هندسه جوش قوس الکتریکی با استفاده از شبکه عصبی مصنوعی که با اطلاعات تجربی 216 نمونه تجربی ایجاد شده، ارائه شده است. شبکه عصبی مصنوعی گسترش داده شده در این مقاله از الگوریتم پس انتشار خطا و با دو لایه پنهان بهره می برد که در آن شش پارامتر شدت جریان، طول قوس، سرعت حرکت الکترود، زاویه الکترود با خط جوش، حرکت عرضی و نوع الکترود به عنوان ورودی و چهار عام...

full text

مدلسازی و پیش بینی صادرات آبزیان دریایی در ایران با استفاده از روش ARIMA و شبکه های عصبی مصنوعی

هدف اصلی این مقاله، مدلسازی و پیش بینی میزان صادرات آبزیان دریایی در ایران است. برای این منظور، از روش های سری زمانی خود توضیح جمعی میانگین متحرک(ARIMA) و شبکه عصبی مصنوعی استفاده می شود. به منظور انجام بررسی، از داده های ماهانه دوره 1374:03 تا 1387:12 برای برآورد و آموزش مدل و از داده های دوره از 1388:01 تا 1390:12 به منظور بررسی قدرت پیش بینی مدل های مختلف استفاده می شود. در این مطالعه، معیار...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 4

pages  127- 138

publication date 2019-12-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023