طراحی یک سیستم CAD برای شناسایی و طبقه‌بندی تومورهای سرطان سینه در تصاویر DCE-MR بر اساس شبکه‌های عصبی کانولوشن سلسله مراتبی

Authors

  • رضا جعفری - استادیار گروه مهندسی پزشکی، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی خواجه نصیر الدین طوسی، تهران، ایران
  • رضا راستی بروجنی کارشناس ارشد مهندسی پزشکی- بیوالکتریک، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی خواجه نصیر
  • محمد تشنه لب - استاد گروه کنترل، دانشکده مهندسی برق و کامپیوتر، دانشگاه صنعتی خواجه نصیر الدین طوسی، تهران، ایران
Abstract:

در این مقاله، یک سیستم CAD بر اساس شبکه های عصبی کانولوشن سلسله‌مراتبی با ساختاری جدید، جهت ایجاد تمایز بین تومورهای خوش‌خیم و بدخیم در تصاویر MR سینه پیشنهاد شده است. شبکه‌ی عصبی کانولوشن، یک شبکه‌ی سلسله مراتبی عصبی است که بر روی تصاویر دو بعدی اعمال می‌شود و فرآیندهای استخراج ویژگی و طبقه‌بندی را در یک ساختار واحد و کاملاً تطبیقی، ادغام می‌کند. این ساختار می تواند ویژگی های دو بعدی کلیدی را به صورت خودکار استخراج نموده و نسبت به اعوجاجات هندسی و محلی در تصاویر ورودی مقاوم است. در ادامه، نتایج پیاده‌سازی فرآیندهای یادگیری و آزمایش HCNN بر اساس روش‌های بهینه‌سازی گرادیان نزولی و پس‌انتشار عدول‌شونده مورد ارزیابی قرار گرفته و نشان داده شده است که HCNN پیشنهادی با رویکرد یادگیری پس انتشار عدول‌شونده، یک ساختار عصبی سلسله مراتبی کارآمد و مقاوم را جهت طراحی یک سیستم CAD پایه در تصاویر MR سینه ارائه می‌کند بطوریکه از آن می‌توان بطور بالقوه، بعنوان یک مکانیسم برای ارزیابی انواع ناهنجاری‌ها در تصاویر پزشکی استفاده نمود.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

طراحی یک سیستم cad برای شناسایی و طبقه بندی تومورهای سرطان سینه در تصاویر dce-mr بر اساس شبکه های عصبی کانولوشن سلسله مراتبی

در این مقاله، یک سیستم cad بر اساس شبکه های عصبی کانولوشن سلسله مراتبی با ساختاری جدید، جهت ایجاد تمایز بین تومورهای خوش خیم و بدخیم در تصاویر mr سینه پیشنهاد شده است. شبکه ی عصبی کانولوشن، یک شبکه ی سلسله مراتبی عصبی است که بر روی تصاویر دو بعدی اعمال می شود و فرآیندهای استخراج ویژگی و طبقه بندی را در یک ساختار واحد و کاملاً تطبیقی، ادغام می کند. این ساختار می تواند ویژگی های دو بعدی کلیدی را ب...

full text

بررسی شبکه های عصبی کانولوشن عمیق جهت تشخیص سرطان پستان در تصاویر ترموگرافی

چکیده زمینه و هدف: سیستم‌های تشخیص Computer-aided design به طور گسترده در تشخیص افتراقی سرطان سینه استفاده می‌شوند. بنابراین بهبود دقت یک سیستم CAD به یکی از حوزه‌های مهم تحقیقاتی تبدیل شده‌است. در این مقاله به بررسی سیستم های CAD مبتنی بر شبکه های عصبی عمیق از نوع کانولوشن در جهت تشخیص سرطان پستان در تصاویر ترموگرافی پرداخته شد. روش بررسی: برای تحلیل مدل‌ها از پایگاه داده “Database...

full text

تشخیص و طبقه بندی سرطان سینه بر اساس شبکه های عصبی کانولوشن

سرطان سینه دومین علت عمده ی مرگ و میر ناشی از سرطان در زنان امروز است. تشخیص زودهنگام سرطان سینه یکی از مهم ترین عوامل در تعیین مراحل درمان برای زنان مبتلا به تومورهای بدخیم می باشد. تحقیقات نشان داده است که در بین روش های مختلف تصویربرداری پزشکی از جمله ماموگرافی، توموگرافی، سونوگرافی و غیره، تصویربرداری رزونانس مغناطیسی با کنتراست بهبودیافته، حساس ترین روش برای غربالگری زنان در معرض خطر بالا ...

15 صفحه اول

ترکیب ماشین بردار پشتیبان و مدل‌های پیش آموزش دیده‌ی شبکه عصبی کانولوشن به منظور طبقه‌بندی تومورهای مغزی در تصاویر ام‌آر‌آی

به دلیل محل رشد تومورهای مغزی در سر انسان، معمولا احتمال مرگ بر اثر این تومورها، شش برابر بیشتر از تومورهای دیگر است. سیستم‌های کامپیوتری را می‌توان برای کاهش تجویز درمان‌های نامناسب و کمک به متخصصان در تشخیص این بیماری استفاده کرد. در این مقاله از یک الگوریتم جدید به‌منظور تشخیص تومورها در 900 تصویر ام‌آر‌آی استفاده شده است. این الگوریتم مشتمل بر چهار فاز اصلی است که در فاز اول بعد از ورود داد...

full text

تشخیص تومورهای مغزی با استفاده از ترکیب سیستم استنتاج فازی-عصبی وفقی و خوشه بندی سلسله مراتبی

تشخیص محدوده تومورهای مغزی یک گام مهم و اساسی در سیستم‌های تشخیص و درمان خودکار می باشد. در این مقاله یک روش ترکیبی مبتنی بر سیستم استنتاج فازی-عصبی وفقی (ANFIS) و خوشه بندی سلسله مراتبی برای تشخیص موقعیت و محدوده تومورهای مغزی ارائه شده است. برای این منظور ابتدا خط مرکزی ناحیه مغز تشخیص داده شده، سپس با بلاک بندی ناحیه دو نیمکره مغز و استخراج ویژگی شدت روشنایی و بافت هر بلاک و نیز با بهره گیری...

full text

شناسایی و اولویت‌بندی عوامل مؤثر بر بازاریابی عصبی در ورزش بر اساس فرایند تحلیل سلسله مراتبی (AHP)

مقدمه: هدف از این مطالعه شناسایی و الویت‌بندی عوامل تأثیرگذار بر بازاریابی عصبی در ورزش‌ها با استفاده از فرایند تحلیل سلسله مراتبی (AHP) بود. مواد و روش‌ها: جوامع و نمونه‌های آماری در بخش کیفی شامل 9 پزشک از متخصصین مغز و اعصاب و علوم اعصاب و 8 بازاریاب و صاحب نظر در زمینه بازاریابی و بازاریابی عصبی بودند. بدین منظور، با تهیه پرسشنامه زوج مقیاسی با استفاده از AHP و تأیید روایی آن توسط 6 صاحب نظ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  1- 14

publication date 2015-05-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023