طبقه بندی میزان تبخیر و تعرق پتانسیل با استفاده از شبکه های عصبی خودسازمانده (Self Organizing Map)
Authors
Abstract:
تبخیـر و تعـرق پتانـسیل نقش مهمی در مطالعات کشاورزی، طرحهای مدیریت منابع آب، طراحی شبکههـای آبیـاری و زهکشی و سازههای آبی دارد. با توجه به اهیمت این پارامتر در این مطالعه اقدام به طبقه بندی تبخیر و تعرق پتانسیل در جنوب استان فارس با استفاده از شبکههای عصبی خودسازمانده (SOM) شد. در این مطالعه دادههای 7 پارامتر حداقل، میانگین و حداکثر دما، ساعات آفتابی، سرعت باد، حداکثر ساعات آفتابی و رطوبت نسبی با روش SOM طبقهبندی و خوشهبندی شدند. نتایج حاصل از این طبقه بندی نشان داد که دماهای حداقل، حداکثر و میانگین در منطقه مورد مطالعه دارای ارتباط معنی داری با یکدیگر میباشند. همچنین دمای حداقل، حداکثر و میانگین ارتباط معکوس با میزان رطوبت هوا در منطقه مورد مطالعه دارند. بر اساس شبکه عصبی خودسازمانده و استفاده از 7 داده به عنوان دادههای ورودی مدل مشخص شد که تبخیر و تعرق در منطقه مورد مطالعه را میتوان در 3 کلاس طبقه بندی نمود. به طوری که کلاس 3 دارای بیشترین تبخیر و تعرق و کلاس 1 دارای کمترین تبخیر و تعرق در منطقه مورد مطالعه باشند.
similar resources
طبقه بندی لندفرم ها با استفاده از شبکه های عصبی خودسازمانده(Self-organization map) (مطالعه موردی: حوضه آبخیز گاوخونی)
امروزه شناسایی لندفرمها و طبقهبندی زمین مبتنی بر روش کارشناسی می باشد که به صورت دستی و با استفاده از عکس های هوایی و نقشه های توپوگرافی انجام می شود که روشی وقت گیر و دارای دقت کمی می باشد. از این رو استفاده از روش های نیمه اتوماتیک و اتوماتیک به منظور طبقه بندی لندفرم ها برای افزایش دقت و سرعت کار، ضروری به نظر می رسد. این پژوهش سعی دارد که به طبقه بندی لندفرم ها بر اساس الگوریتم شبکه های...
full textطبقه بندی لندفرم ها با استفاده از شبکه های عصبی خودسازمانده(self-organization map) (مطالعه موردی: حوضه آبخیز گاوخونی)
امروزه شناسایی لندفرمها و طبقه بندی زمین مبتنی بر روش کارشناسی می باشد که به صورت دستی و با استفاده از عکس های هوایی و نقشه های توپوگرافی انجام می شود که روشی وقت گیر و دارای دقت کمی می باشد. از این رو استفاده از روش های نیمه اتوماتیک و اتوماتیک به منظور طبقه بندی لندفرم ها برای افزایش دقت و سرعت کار، ضروری به نظر می رسد. این پژوهش سعی دارد که به طبقه بندی لندفرم ها بر اساس الگوریتم شبکه های...
full textطبقه بندی سیگنال الکترومایوگرام سطحی چند کاناله ساعد با استفاده از یک ساختار خودسازمانده فازی-عصبی
طبقه بندی با دقت بالای سیگنال الکترومایوگرام سطحی برای کنترل دست مصنوعی از عناوین مهم تحقیق در حوزه توان بخشی است. به ویژه آنکه با افزایش درجات آزادی، نرخ تشخیص درست بشدت کاهش می یابد. در مقاله حاضر بر اساس یک ساختار خودسازمانده فازی-عصبی جدید پیشنهادی پنج لایه، طبقه بندی سیگنال الکترومایوگرام چند کاناله انجام شده است. در این ساختار متناظر با ویژگی های ورودی، قواعد جدید ایجاد و وزن آنها بر اساس...
full textمدل سازی تبخیر- تعرق گیاه پتانسیل با استفاده از شبکه عصبی مصنوعی با حداقل متغیرهای اقلیمی در ایستگاه سینوپتیک مشهد
full text
پیشبینی تبخیر-تعرق مرجع ایستگاه سینوپتیک اهواز با استفاده از مدل ترکیبی موجک – شبکه عصبی GMDH
سابقه و هدف: تخمین دقیق مقدار تبخیر-تعرق مرجع برای انجام بسیاری از تحقیقات ضروری و از مهمترین مسائل در طرحهای آبیاری و زهکشی و منابع آب به شمار میرود. یکی از این مسائل که میتواند در راستای اهداف ذکرشده اعمال شود، پیشبینی تبخیر-تعرق مرجع برای آینده است تا بتوان با برنامهریزیهای مناسب، امکان استفاده بهتر از منابع موجود را فراهم نمود (7). در سالهای اخیر استفاده از روشهای هوش مصنوعی و مدل ...
full textMy Resources
Journal title
volume 6 issue 2
pages 128- 137
publication date 2016-02-20
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023