طبقه بندی دادههای فراطیفی براساس سیستمهای ماشینهای بردار پشتیبان چندگانه با استفاده از گروه بندی باندهای طیفی
Authors
Abstract:
با پیشرفتهای کنونی در سنجش از دور و علوم مرتبط با آن، داده سنجش از دور فراطیفی با فراهم آوردن حجم بالای اطلاعات طیفی برای تشخیص بهتر کلاسهای زمینی مورد استفاده فراوان قرار میگیرد، اگرچه تعداد زیاد باندهای طیفی در مقابل تعداد کم نمونههای آموزشی در دسترس، مشکل "پدبده هیوز" را در این داده ایجاد میکند. به علاوه تعداد زیاد باندهای طیفی که اغلب به یکدیگر وابسته میباشند، شامل اطلاعات زاید فراوانی هستند. این سطح بالا از پیچیدگی در دادههای فراطیفی، باعث عدم کارایی روشهای طبقه بندی کلاسیک در طبقه بندی این نوع داده میشود. با توجه به محدودیتهای طبقه بندی کنندههای انفرادی در این شرایط، سیستمهای حاوی مجموعه طبقه بندی کنندهها ممکن است کارایی بهتری نسبت به طبقه بندی کنندههای انفرادی داشته باشند. تحقیق پیش رو یک روش نوین برای طبقه بندی دادههای فراطیفی با بکارگیری یک سیستم چندگانه ماشینهای بردار پشتیبان که شامل گروه بندی باندهای طیفی است، معرفی میکند. روش پیشنهادی در اولین گام برای گروه بندی باندهای طیفی از روشی براساس اطلاعات دوطرفه یا متقابل استفاده میکند. روش پیشنهادی در دومین گام، از ماشین بردار پشتیبان به منظور طبقه بندی هر گروه از باندهای طیفی استفاده میکند تا مجموعه ای از طبقه بندی کنندهها حاصل شود. سرانجام روش پیشنهادی یک الگوریتم ادغام طبقه بندی کنندهها براساس تئوری بیز با نام Naïve Bayes (NB) را بکار میبرد. نتایج حاصل از روش پیشنهادی برای دو نمونه از دادههای فراطیفی نشان میدهد که روش پیشنهادی در مقایسه با SVM استاندارد-طبقه بندی کننده ایی که همه باندها را در یک زمان طبقه بندی می کند- نتایج بهتری را ایجاد میکند. این نتایج همچنین کارایی مفهوم گروه بندی باندها و سیستمهای طبقه بندی کننده چندگانه را در مقایسه با روشهای معمول پیشین نشان میدهد.
similar resources
طبقه بندی عارضه مبنای تصاویر پلاریمتری سار با استفاده از طبقه بندی کننده های چندگانه ماشین بردار پشتیبان
طبقه بندی پوشش زمین یکی از کاربرد های مهم استفاده از داده های سنجش از دوری است. از میان تصاویر و دادههای مورد استفاده در این مورد، داده های پلاریمتری راداری به خاطر امکان استخراج ویژگی های زیاد و متنوع میتوانند برای طبقه بندی گزینه مناسبی باشند. در این مقاله یک روش عارضه مبنا برای طبقه بندی مناطق شهری با استفاده از داده های پلاریمتری راداری به صورت تلفیق نتایج پیکسل مبنای طبقه بندی svm و قطعات...
full textطبقه بندی متقاضیان تسهیلات اعتباری بانکها با استفاده از تکنیک ماشین بردار پشتیبان
در صنعت بانکداری یکی از موضوعاتی که همواره بایستی مدنظر سیاستگذاران اعتباری قرار دا شته باشد، مبحث مدیریتریسک است. در بین ریسک های مختلفی که بان کها با آن مواجهند, ریسک اعتباری از با اهمیت ترین آن ها است که اززیان های ناشی از ناتوانی یا عدم تمایل مشتری به ایفای تعهدات خویش در برابر بانک حاصل م یگردد.جهت مدیریت و کنترل ریسک مذکور , سیستم های طبقه بندی اعتباری مشتریان ضرورتی انکار ناپذیر است . چن...
full textبهبود طبقه بندی طیفی- مکانی جنگل پوشای مینیمم با کاهش ابعاد تصاویر فراطیفی
فنآوری سنجش از دور فراطیفی دارای کاربردهای فراوان در طبقهبندی پوششهای زمین و بررسی تغییرات آنها است. با پیشرفتهای اخیر و ایجاد تصاویری با قدرت تفکیک مکانی بالا، لزوم استفاده توام از اطلاعات طیفی و مکانی را در طبقهبندی تصاویر فراطیفی ایجاب میکند. در این تحقیق روشی جدید جهت طبقهبندی طیفی-مکانی تصاویر فراطیفی به کمک الگوریتم جنگل پوشای مینیمم ( MSF) مبتنی بر نشانهها که یکی از دقیقترین الگ...
full textتخمین بعد ذاتی و کاهش ابعاد داده های فراطیفی به منظور طبقه بندی با استفاده از روش های درخت تصمیم، ماشین بردار پشتیبان و شبکه عصبی
طبقه بندی تصاویر فراطیفی، به دلیل کاربردهای برجسته این تصاویر در حوزه های مختلف مانند نظامی، مدیریت و برنامه ریزی شهری، مدیریت منابع و کشف معادن، یکی از مسائل بسیار مهم در پردازش تصاویر فراطیفی به شمار میآید. تصاویر فراطیفی به دلیل دارا بودن توان تفکیک طیفی بالا، اطلاعات قابل توجهی در ارتباط با ترکیب شی با صحنه تصویربرداری در اختیار کاربر قرار میدهند. بزرگی ابعاد این تصاویر نه تنها مح...
full textبهینه سازی طبقه بندی کننده ی ماشین بردار پشتیبان با استفاده از آلگوریتم ژنتیک به منظور طبقه بندی تصاویر پلاریمتریک راداری
طبقه بندی تصاویر ماهواره ای یکی از متداول ترین روشهای استخراج اطلاعات از داده های سنجش از دوری می باشد. با ظهور سنجنده های مایکروویو امکان بهره برداری از اطلاعاتی متمایز از اطلاعات قابل استخراج از سنجنده های نوری فراهم آمده است. دلیل این امر امکان استفاده از ویژگی های متمایز طیف الکترو مغناطیس در محدوده ی مایکروویو است که توسط سنجنده های راداری قابل برداشت می باشد. در این بین تصاویر پلاریمتریک ...
full textطبقه بندی تصاویر ابرطیفی با استفاده از ماشین بردار پشتیبان
در این تحقیق به پیاده سازی و ارزیابی الگوریتم ماشین های بردار پشتیبان در تصاویر ابرطیفی پرداخته شده است. در طبقه بندی تصاویر ابرطیفی به علت ابعاد زیاد، کم بودن نمونه های آموزشی، تغییرات مکانی امضای طیفی، وجود نویز دارای چالش هایی هستیم. با توجه به مشکلات مطرح شده در طبقه بندی تصاویر ابرطیفی نیاز به روش هایی می باشد که به راحتی با ابعاد بالای داده های ورودی کار کرده و همچنین با نمونه های آموزشی ...
15 صفحه اولMy Resources
Journal title
volume 4 issue 3
pages 253- 286
publication date 2015-02
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023