شبیهسازی تراز آب زیرزمینی با استفاده از مدل ترکیبی موجک-ماشین آموزش نیرومند خودتطبیقی
Authors
Abstract:
در مطالعه حاضر، با استفاده از روشهای نوین ماشین آموزش نیرومند خود تطبیقی (SAELM)و موجک-ماشین آموزش نیرومند خود تطبیقی (WA-SAELM) تراز آب زیرزمینی در منطقه کبودر آهنگ واقع در استان همدان مورد بررسی قرار گرفت. در ابتدا با استفاده از تابع خود همبستگی، تاخیرهای موثر شناسایی شده و سپس با استفاده از این تاخیرها برای هر یک از روشهای SAELM و WA-SAELM، 10 الگوی متمایز ورودی توسعه داده شد. با ارزیابی نتایج مدلهای مذکور، WA-SAELM بهعنوان مدل برتر معرفی شد که تجزیه و تحلیل نتایج شبیهسازی نشان دهنده دقت بالای مدل برتر در تخمین تراز آب زیرزمینی بود. مقادیر ضریب همبستگی (R)، ریشه میانگین مربعات خطا (RMSE) و ضریب بهرهوری نش-ساتکلیف (NSC) برای مدل برتر بهترتیب برابر با 969/0، 358/0 و 939/0 محاسبه گردید.
similar resources
پیشبینی تراز آب زیر زمینی با استفاده از مدلهای مادفلو، ماشین آموزش نیرومند و ویولت-ماشین آموزش نیرومند
در این مطالعه تراز آب زیرزمینی منطقه کبودر آهنک واقع در استان همدان، ایران با استفاده از مدلهای مادفلو، ماشین آموزش نیرومند (ELM) و ویولت-ماشین آموزش نیرومند WA-ELM)) شبیهسازی میشود. تجزیه و تحلیل نتایج مدلسازی نشان میدهد که مدلهای عددی تراز آب زیرزمینی را با دقت قابل قبولی شبیهسازی میکنند. بهعنوان مثال مقادیر ضریب همبستگی و شاخص پراکندگی برای مدل مادفلو بهترتیب مساوی 0.917 و 0.0004 ب...
full textاستفاده از مدل های ترکیبی ماشین بردار پشتیبان - موجکی و شبکه عصبی -موجکی در پیشبینی تراز آب زیرزمینی دشت اردبیل
چکیده آبهای زیرزمینی همواره به عنوان یکی از منابع مهم و عمده ی تأمین آب شرب و کشاورزی به ویژه در مناطق خشک و نیمه خشک مطرح بودهاند. به منظور آگاهی از وضعیت این منابع و مدیریت بهینه ی آنها، لازم است پیشبینی دقیقی از نوسانات سطح آب زیرزمینی صورت گیرد. در این تحقیق اطلاعات 15 پیزومتر موجود در دشت اردبیل مورد استفاده قرارگرفت. از تبدیل موجک و روش خوشهبندی به ترتیب برای پیشپردازش زمانی و مک...
full textپیشبینی تراز سطح آب زیرزمینی آبخوان دشت ارومیه با استفاده از مدل هیبرید تبدیل موجک-ماشین یادگیری بیشینه و بهینهسازی با ازدحام ذرات کوانتومی
امروزه با توجه به اهمیت بالای مدیریت پایدار آبهای زیرزمینی، برای بررسی و ارزیابی منابع آب از مدلسازی و پیشبینی تراز آبهای زیرزمینی (GWL) استفاده میشود. هدف از این پژوهش، ارزیابی عملکرد دو مدل ماشین یادگیری بیشینه (ELM) و شبکه عصبی مصنوعی (ANN) و همچنین، تلفیق آن دو مدل با الگوریتم تبدیل موجک (W-ELM و W-) است که در نهایت برای بالا بردن قدرت پیشبینی و بهینهکردن وزنهای ورودی (وزنهای...
full textشبیه سازی نوسانات سطح آب زیرزمینی با استفاده از ترکیب ماشین بردار پشتیبان و تبدیل موجک
امروزه در بسیاری از کشورهای جهان، به ویژه در مناطقی که با کمبود آبهای سطحی مواجه هستند، بهرهبرداری از منابع آب زیرزمینی بیش از پیش مورد توجه قرار گرفته است. بهرهبرداری بیرویه از این منابع، بدون بهرهگیری از مطالعات منابع آب زیرزمینی میتواند مشکلات و پیامدهای جبرانناپذیری را بهبار آورد. مدیریت صحیح این منابع با شناخت کامل و آگاهی از این منابع امکانپذیر است. در این تحقیق از مدل ماشین بردا...
full textپیش بینی سطح آب زیرزمینی با استفاده از مدل ترکیبی سری زمانی-موجک (مطالعه موردی: دشت فیروزآباد)
در سالهای اخیر، پدیده تغییراقلیم، خشکسالی، برداشت بیرویه آبهای زیرزمینی،... باعث افت شدید سطح آبهای زیرزمینی شده است؛ که خطراتی همچون نشست زمین و افزایش کویری شدن را در پی داشته است. لذا پیشبینی قابل اطمینان سطح آبهای زیرزمینی برای مدیریت این منابع، حائز اهمیت است. امروزه تبدیل موجک از طریق تجزیه سیگنالها به زمان و فرکانس شیوه نوینی را برای پردازش سیگنال ارائه میدهد. در پژوهش حاضر، به...
full textمدلسازی تراز آب زیرزمینی با بهرهگیری از مدل هیبرید موجک- شبکه عصبی مصنوعی (مطالعه موردی: دشت شریفآباد)
منابع آب زیرزمینی یکی از مهمترین منابع تأمین آب میباشند، از اینرو مدلسازی آنها بسیار حائز اهمیت میباشد. ارزیابی و پیشبینی تراز آب زیرزمینی به پیشبینی منابع آب زیرزمینی کمک میکند. هدف این مطالعه ارزیابی عملکرد سه مدل رگرسیون خطی چندمتغیره (MLR)، مدل هیبرید موجک- شبکه عصبی (WNN) و شبکه عصبی مصنوعی (ANN) در پیشبینی سطح آب زیرزمینی (GWL)، بر مبنای دو معیار ریشه خطای مربع متوسط (RMSE) و ضر...
full textMy Resources
Journal title
volume 51 issue 4
pages 975- 986
publication date 2020-06-21
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023