روش پیشتعلیم سریع بر مبنای کمینهسازی خطا برای همگرائی یادگیری شبکههای عصبی با ساختار عمیق
Authors
Abstract:
In this paper, we propose efficient method for pre-training of deep bottleneck neural network (DBNN). Pre-training is used for initial value of network weights convergence of DBNN is difficult because of different local minimums. While with efficient initial value for network weights can avoided some local minimums. This method divides DBNN to multi single hidden layer and adjusts them, then weighs of these networks is used for initial value of DBNN weights and then train network. Proposed network is used for extraction of face component. This Method is implemented on Bosphorus database. Comparing results shows that new method has more convergence speed and generalization than random initial value. By means of this new training method and with same training error rate pixel reconstruction error is decreased 13.69% and recognition rate is increased 10%
similar resources
روش پیش تعلیم سریع بر مبنای کمینه سازی خطا برای همگرائی یادگیری شبکه های عصبی با ساختار عمیق
در این مقاله با توسعه روش های موجود و بر مبنای کمینه سازی خطا و حفظ تمایز بیشینه مابین نمونه ها یک روش پیش تعلیم لایه به لایه سریع و کارا جهت مقداردهی اولیه مناسب وزن ها در شبکه های عصبی با ساختارهای عمیق ارائه شده است. تعلیم شبکه های عصبی عمیق به دلیل مواجه با تعداد بالای کمینه های موضعی اغلب همگرا نمی گردد. درحالیکه با مقداردهی اولیه مناسب وزن های شبکه به جای مقادیر تصادفی در ابتدای مسیر تعلی...
full textروش پیشتعلیم لایهبهلایه دوسویه برای تعلیم شبکههای عصبی عمیق
در این مقاله، یک روش پیشتعلیم دوسویه برای همگرا نمودن تعلیم شبکههای عصبی عمیق با یادگیری دیگرانجمنی ارائه شده است. تعلیم این شبکهها بهدلیل مواجه بودن با تعداد بالای کمینههای موضعی اغلب همگرا نمیگردد. این در حالی است که با مقداردهی اولیه مناسب وزنهای شبکه، میتوان از بسیاری از کمینههای موضعی اجتناب نمود. روش پیشتعلیم لایهبهلایه دوسویه روشی سریع و کارا میباشد که در یک مسیر دوسویه بهط...
full textاستخراج ویژگی از دادههای عمق با استفاده از روش یادگیری عمیق برای کنترلِ باناظر ربات چرخدار
این مقاله چارچوبی از یادگیری عمیقِ با ناظر را جهت ناوبری ربات چرخدار در زمینهای هموار با محوریت وظایف پیگیری دیوار و اجتناب از موانع ارائه مینماید. در اینجا، فرض بر این است که ربات تنها به یک سیستم بینایی (دوربین کینکت) مجهز است. چالش اصلی در هنگام استفاده از تصاویر عمق، ابعاد بالای تصاویر و استخراج ویژگیهای مناسب از آنها با هدف کاهش ابعاد ورودی کنترلگر میباشد. برای این منظور در این مقاله...
full textالگوریتمی سریع برای تحلیل سرعت لرزهای بر مبنای شباهت AB
تحلیل سرعت یکی از مراحل اصلی و زمانگیر در پردازش دادههای لرزهای است. در پردازش دادههای لرزهای اجرای مراحل تصحیح برونراند نرمال، برانبارش خوب و ایدهآل، مهاجرتهای زمانی و عمقی، حذف چندگانهها و درونیابی ردلرزهها نیاز به مدل سرعتی خوب دارند. روشهای متفاوتی برای ساخت مدل سرعتی از دادههای لرزهای معرفی شده است. مرسومترین روش تحلیل سرعت، تحلیل بر مبنای برونراند نرمال است؛ که از اندازهگی...
full textپالایش شرح گذاری مجموعه تصاویر با مقیاس بزرگ با یادگیری انتقالی در شبکه عصبی کانولوشنال عمیق
فرآیند پالایش شرح گذاری تصاویر، رویکردی موثر در بهبود بازیابی تصاویر مبتنی بر برچسب میباشد. در شبکه های اجتماعی و موتورهای جستجو بسیاری از تصاویر دارای تگ های مبهم، ناقص و بی ارتباط با محتوا هستند. وجود این تگ های غیرقابل اعتماد، موجب کاهش دقت بازیابی تصاویر می شود. از اینرو در دهه اخیر، الگوریتم هایی با عنوان پالایش تگ (TR) مطرح شدهاند که به رفع نویز و غنیسازی برچسبهای تصاویر میپر...
full textMy Resources
Journal title
volume 10 issue 1
pages 26- 13
publication date 2013-09
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023