خوشهبندی شبکه چاهکهای مشاهدهای و پیشبینی سطح آب زیرزمینی به کمک شبکههای عصبی مصنوعی (مطالعه موردی: دشت مراغه)
Authors
Abstract:
هدف از پژوهش حاضر خوشهبندی چاهکهای مشاهدهای آبخوان دشت مراغه (آذربایجانشرقی) و پیشبینی تراز آب زیرزمینی بهکمک شبکههای عصبی مصنوعی بود. ابتدا با کمک روش خوشهبندی سلسله مراتبی-WARD 20 چاهک مشاهدهای محدوده دشت مراغه با طول دوره آماری بیش از 15 سال خوشهبندی شد. سپس یک خوشه با 3 زیرخوشه همگن انتخاب و نماینده هر زیرخوشه تعیین شد. با استفاده از شبکههای عصبی مصنوعی با ساختار پرسپترون چند لایه با الگوریتم پس انتشار خطا، تراز آب زیرزمینی نماینده هر زیرخوشه شبیهسازی گردید. نتایج نشان داد که در نظر گرفتن دادههای دمای هوا بهعنوان ورودی در شبکههای عصبی مصنوعی موجب اغتشاش شبکه و در نظر گرفتن تأخیر زمانی برای پارامترهای ورودی، باعث تخمین دقیقتر مقادیر سطح آب زیرزمینی شد. بر اساس نتایج، کمترین و بیشترین مقدار RMSE حاصل بین مقادیر محاسباتی و مشاهداتی بهترتیب 26/0 و 63/0 متر بود. همچنین بیشترین و کمترین مقدار R2 بهترتیب 86/0 و 82/0 بهدست آمد.
similar resources
مقایسه روش های زمین آمار و شبکه عصبی مصنوعی در تخمین سطح آب زیرزمینی(مطالعه موردی: دشت نورآباد، استان لرستان)
زمینه و هدف: در بررسی مسایل ژئوهیدرولوژى، تغییرات سطح ایستابى از اهمیت بسیار بالایی برخوردار است. بنابراین تحقیق و پژوهش در تخمین نقاط فاقد اطلاعات ضروری می باشد. روش بررسی: یکی از روش های مهم در برآورد سطح ایستابی آب های زیرزمینی درون یابی است. طى چند دهه اخیر به دلیل وجود همبستگی مکانی بین مقادیریک متغیر در یک ناحیه مبانى علم زمین آمار به خوبى گسترش یافته و توانایی هاى این شاخه از آمار در بر...
full textارزیابی الگوریتمهای انتخابات، رقابت استعماری و روش شبکه عصبی مصنوعی در بررسی روند افت تراز سطح ایستابی دشت رشتخوار
ارزیابی نوسانات سطح ایستابی در مناطق خشک و نیمهخشک کشور، نیازمند پیشبینی دقیق و کارآمدی از نوسانات آن میباشد. استفاده از روشهای نوین از جمله الگوریتمهای فراابتکاری، شبکههای عصبی مصنوعی و روشهای فازی، جهت تولید دادههای سطح آب مصنوعی و پیشبینی آینده تراز سطح ایستابی به دلیل کارآیی بسیار بالای خود، بسیار کاربردی است. در پژوهش حاضر، با استفاده از روشهای الگوریتمهای انتخابات و رقابت استعماری، شبکه ع...
full textمقایسه روش های زمین آمار و شبکه عصبی مصنوعی در تخمین سطح آب زیرزمینی(مطالعه موردی: دشت نورآباد، استان لرستان)
زمینه و هدف: در بررسی مسایل ژئوهیدرولوژی، تغییرات سطح ایستابی از اهمیت بسیار بالایی برخوردار است. بنابراین تحقیق و پژوهش در تخمین نقاط فاقد اطلاعات ضروری می باشد. روش بررسی: یکی از روش های مهم در برآورد سطح ایستابی آب های زیرزمینی درون یابی است. طی چند دهه اخیر به دلیل وجود همبستگی مکانی بین مقادیریک متغیر در یک ناحیه مبانی علم زمین آمار به خوبی گسترش یافته و توانایی های این شاخه از آمار در بر...
full textتخمین سطح آب زیرزمینی با استفاده از روش ترکیبی زمین آمار و شبکه های عصبی مصنوعی (مطالعه موردی: دشت شهرکرد)
از اساسیترین موارد در مدیریت کمی منابع آب زیرزمینی تخمین سطح آب با استفاده از دادههای برداشت شده از شبکه چاههای مشاهدهای میباشد. هدف این تحقیق میانیابی سطح آبزیرزمینی با استفاده از الگوریتم ترکیبی زمین آمار و شبکههای عصبی مصنوعی میباشد و دشت شهرکرد به عنوان نمونه انتخاب شده است. بعد ازانتخاب دو ماه اسفند 1385 و شهریور 1388 به عنوان ماههای دارای به ترتیب حداکثر و حداقل سطح آب (طی دوره ...
full textتخمین سطح آب زیرزمینی با استفاده از روش ترکیبی زمین آمار و شبکههای عصبی مصنوعی (مطالعه موردی: دشت شهرکرد)
از اساسیترین موارد در مدیریت کمی منابع آب زیرزمینی تخمین سطح آب با استفاده از دادههای برداشت شده از شبکه چاههای مشاهدهای میباشد. هدف این تحقیق میانیابی سطح آبزیرزمینی با استفاده از الگوریتم ترکیبی زمین آمار و شبکههای عصبی مصنوعی میباشد و دشت شهرکرد به عنوان نمونه انتخاب شده است. بعد ازانتخاب دو ماه اسفند 1385 و شهریور 1388 به عنوان ماههای دارای به ترتیب حداکثر و حداقل سطح آب (طی ...
full textمدلسازی تراز آب زیرزمینی با بهرهگیری از مدل هیبرید موجک- شبکه عصبی مصنوعی (مطالعه موردی: دشت شریفآباد)
منابع آب زیرزمینی یکی از مهمترین منابع تأمین آب میباشند، از اینرو مدلسازی آنها بسیار حائز اهمیت میباشد. ارزیابی و پیشبینی تراز آب زیرزمینی به پیشبینی منابع آب زیرزمینی کمک میکند. هدف این مطالعه ارزیابی عملکرد سه مدل رگرسیون خطی چندمتغیره (MLR)، مدل هیبرید موجک- شبکه عصبی (WNN) و شبکه عصبی مصنوعی (ANN) در پیشبینی سطح آب زیرزمینی (GWL)، بر مبنای دو معیار ریشه خطای مربع متوسط (RMSE) و ضر...
full textMy Resources
Journal title
volume 27 issue 1
pages 281- 294
publication date 2017-05-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023