تولید شتابنگاشت مصنوعی زلزله با استفاده از شبکه عصبی فازی

Authors

  • محمد خراسانی دانشگاه علم و صنعت ایران
Abstract:

نیاز روزافزون به تحلیل دینامیکی تاریخچه زمانی و عدم­وجود شتابنگاشت­های مناسب در مناطق مختلف، تولید شتابنگاشت­های مصنوعی سازگار با طیف طرح را ضروری می­سازد. هدف اصلی این تحقیق ارائه روشی نوین، بر اساس تبدیل بسته موجک و روش های هوش مصنوعی  برای تولید شتابنگاشت مصنوعی زلزله سازگار با طیف طرح بر اساس مقدار بزرگا، فاصله از گسل و طیف مربوطه می باشد. در این تحقیق از شبکه های عصبی فازی و آنالیز موجک پکت برای رسیدن به هدف مورد نظر استفاده خواهد شد. روش کار بدین صورت است که ابتدا شتابنگاشتهای زلزله با توجه به شرایط ساختگاهی مشخص،  بزرگا و فاصله از مبداء زلزله جمع آوری شده و  سپس طیف این شتابنگاشت ها برای آموزش با شبکه های عصبی فازی بدست می آید. طیف های کاهندگی بر اساس اطلاعات موجود در منطقه با استفاده از روش های رگرسیون گیری غیر خطی ریاضی بدست آمده و سپس با استفاده از شبکه های عصبی فازی ارتباط بین رکورد های زلزله و طیف های بدست آمده از هر رکورد بدست می آید. در این بخش با استفاده از آنالیز موجک پکت شتابنگاشت­ها به زیرشتابنگاشت­ها (ضرایب موجک) تجزیه شده و در مرحله بعد با کمک گرفتن از شبکه های عصبی فازی رابطه بین طیفهای پاسخ شتابنگاشت­ها با ضرایب موجک پکت بدست می آید.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

تولید شتابنگاشت مصنوعی با استفاده از شبکه عصبی مصنوعی

کمبود داده های شتابنگاشتی در اکثر نقاط از یک سو و لزوم طراحی دقیق دینامیکی سازه ها از سوی دیگر باعث رویکرد به سمت تولید شتابنگاشتهای مصنوعی شده است. دراین تحقیق ضمن مروری بر روشهای کلی ساخت شتابنگاشت مصنوعی ، درابتدا به تشریح روش استفاده از مدل لرزه ای برای تولید شتابنگاشت مصنوعی پرداخته شده است.این روش به خاطر اینکه اکثر پارامترهای مورد استفاده در آن از عدم قطعیت زیادی برخوردارند چندان مورد تو...

15 صفحه اول

تشخیص بیماری دیابت با استفاده از شبکه عصبی مصنوعی و عصبی- فازی

Background & Aim: A main problem in diabetes is its timely and accurate diagnosis. This study aimed at diagnosing diabetes using data mining methods. Methods: The present study is an analytical investigation including 768 individuals with 8 attributes. Artificial neural networks and fuzzy neural networks were used to diagnose the diabetes. To achieve a real accuracy, the Kfold method was used ...

full text

تشخیص آنامولی های TEC قبل از وقوع زلزله های بزرگ با استفاده از شبکه عصبی مصنوعی

وقوع زلزله علاوه بر تغییر در هندسه و فیزیک پوسته زمین تأثیرات دیگری را نیز به همراه دارد. از آن جمله، تأثیر بر لایه یونسفر می‍باشد که خود را به‌صورت تغییر در میزان الکترون، چگالی یون‌ها، میدان‌های الکتریکی و مغناطیسی این لایه نشان می‌دهد. هر پارامتر ژئوفیزیکی و ژئوشیمیایی در لایه‌های لیتوسفر، اتمسفر و یونسفر زمین که قبل از وقوع زلزله تغییراتی در آن پدید آید به‌عنوان پیش‌نشانگر شناخته می‌شود...

full text

مدل‌سازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی و شبکه فازی- عصبی تطبیقی در حوزه آبخیز کسیلیان

     Rainfall runoff modeling and prediction of river discharge is one of the important practices in flood control and management, hydraulic structure design and drought management. The present article aims to simulate daily streamflow in Kasilian watershed using an artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS). The intelligent methods have the high potential for dete...

full text

تولید مصنوعی جریان رودخانه با استفاده از شبکه‌های عصبی مصنوعی

در این مطالعه قابلیت مدل‎های شبکه عصبی مصنوعی در زمینه تولید مصنوعی جریان ارزیابی می‌شود. مدلی که برای تولید مصنوعی بکار رفته با ترکیب مدل شبکه عصبی و یک مؤلفه تصادفی با توزیع نرمال ایجاد شده است. در توسعه مدل از شبکه‌ عصبی چند لایه تغذیه پیشرفتی با الگوریتم آموزشی انتشار برگشتی خطا استفاده شده است. بر این اساس مدل، سری‌های بلند مدت و تا 300 سال جریان مصنوعی روزانه در رودخانه خرسان را تنها با ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 4

pages  65- 77

publication date 2016-02-24

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023