توسعه کابرد مدل های باکس جنکینز ،شبکه عصبی مصنوعی و تعدیل نمایی در پیش بینی و مدیریت پدیده های اجتماعی (مطالعه موردی: پیش بینی روند ازدواج و طلاق در استان ایلام)

Authors

  • اردشیر شیری استادیار، گروه مدیریت، دانشگاه ایلام ، ایلام، ایران ( نویسنده مسئول)
  • رحمت اله محمدی پور استادیار، گروه حسابداری واحد ایلام، دانشگاه آزاد اسلامی، ایلام، ایران
  • محمدرضا امیدی دانشجوی دکترای مهندسی صنایع، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران
  • نبی امیدی مربی، گروه مدیریت، دانشگاه پیام نور، ایران
Abstract:

روش‌های پیش‌بینی و آینده پژوهی یکی از ابزارهای مهم در اختیار مدیران و کارشناسان برای اخذ تصمیمات راهبردی وصحیح است. با وجود توسعه روش های پیش بینی ، ولی کمتر به کاربرد این روش ها در پیش بینی پدیده های اجتماعی مانند ازدواج، طلاق و رشد جمعیت پرداخته شده است.در این تحقیق با استفاده از سری زمانی تعداد ازدواج و طلاق در استان ایلام بین سال های 1371 تا 1392 به پیش بینی این مقادیر با استفاده از مدل های باکس و جنکینز ،شبکه عصبی مصنوعی و تعدیل نمایی برای سال های آتی پرداخته شده است.نتایج تحقیق نشان داد که دقت پیش بینی مدل باکس جنکینز برای پیش بینی تعداد ازدواج  و شبکه‌های عصبی برای پیش بینی تعداد طلاق بیشتر از سایر روش های پیش بینی است. مقادیر پیش بینی شده نشان داد که نسبت ازدواج به طلاق در استان ایلام  بین سال های آتی  1393تا 1396 با شیب ملایم، به سمت کاهش حرکت می کند.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

توسعه کابرد مدل‌های باکس جنکینز، شبکه عصبی مصنوعی و تعدیل نمایی در پیش‌بینی و مدیریت پدیده‌های اجتماعی (مطالعه موردی: پیش بینی روند ازدواج و طلاق در استان ایلام)

روش‌های پیش‌بینی و آینده پژوهی یکی از ابزارهای مهم در اختیار مدیران و کارشناسان برای اخذ تصمیمات راهبردی و صحیح است. با وجود توسعه روش های پیش بینی ، ولی کمتر به کاربرد این روش ها در پیش بینی پدیده های اجتماعی مانند ازدواج ، طلاق و رشد جمعیت پرداخته شده است.در این تحقیق با استفاده از سری زمانی تعداد ازدواج و طلاق در استان ایلام بین سال های 1371 تا 1392 به پیش بینی این مقادیر با استفاده از مدل ه...

full text

مقایسه دقت پیش بینی مدل های باکس- جنکینز در مدل سازی بارندگی فصلی(مطالعه موردی: ایستگاه های منتخب استان خوزستان)

بنا بر اهمیت روز افزون تأمین آب در کشور، مدیریت منابع آب از اهمیت ویژه ای برخوردار است. پیش بینی بارندگی به عنوان یکی از مهمترین پارامترهای اقلیمی از اهمیت ویژه ای در استفاده از منابع برخوردار است. برای پیش بینی بارش می توان از سری های زمانی استفاده کرد. پژوهش حاضر در سه ایستگاه منتخب (اهواز، آبادان و دزفول) از استان خوزستان به منظور مقایسه دقت مدل های باکس- جنکینز انجام شده است. برای این منظور...

full text

کاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه

پیش‌بینی بارش یکی از مهم‌ترین مسائل در زمینه مدیریت بهینه منابع آب در بخش‌های مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیش‌بینی بارش زمستانه استان خراسان رضوی با استفاده از شبکه‌های عصبی مصنوعی می‌باشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقه‌ای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس...

full text

مدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی

شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...

full text

مقایسه دقت پیش بینی سود توسط مدیریت با سری های زمانی باکس-جنکینز

  در این تحقیق تلاش محقق بر این است که برای پیش بینی EPS شرکتها، مشهورترین روش های پیش بینی را در مقایسه با پیش بینی های مدیریت در بودجه شرکتها مورد مقایسه قرار دهد. بدین منظور از بین روش های گوناگون پیش بینی، مشهورترین آنها (روش باکس-جنکینز) انتخاب و برمبنای روشهای اقتصاد سنجی، مدل مناسب برازش میشود. بدیهی است براساس روشهای صحت سنجی و آزمونهای اقتصاد سنجی، مدل فوق بایستی تایید گردد. در این حا...

full text

مقایسه قدرت مدل های شبکه عصبی مصنوعی و شبکه عصبی پویا در پیش بینی نرخ ارز: کاربردی از تبدیل موجک

این مطالعه تلاشی است در جهت به­کارگیری ترکیب مدل شبکه­ی عصبی پویا و تجزیه­ی موجک جهت میسر نمودن امکان انتخاب یک الگوی بهینه جهت پیش­بینی متغیر مذکور می­باشد. جهت تحقق این مهم، از داده­های سری­زمانی ماهانه­ی نرخ ارز طی بازه­ی زمانی فروردین 1377 الی آذر 1391، که مشتمل بر 177 مشاهده بوده که از این بین، تعداد 150 مشاهده جهت مدل­سازی­ها استفاده شده و تعداد 27 مشاهده نیز جهت شبیه­سازی و یا به بیان دی...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 26  issue شماره 3 (پیاپی 104)

pages  25- 37

publication date 2016-11-21

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023