توسعه مدل شبکه عصبی بر مبنای توابع آموزش گرادیان مزدوج و پسانتشار ارتجاعی برای پیشبینی ضریب انتشار طولی رودخانهها
Authors
Abstract:
گام اساسی در مدلسازی کیفی محیطهای آبی یک بعدی مانند رودخانهها، تعیین ضریب انتشار طولی (LDC) برای معادلهی انتقال-پخش آلایندهها است. در این مقاله برای پیشبینی LDC، مدل شبکهی عصبی مصنوعی (ANN) بر مبنای الگوریتمهای آموزشی با رویکرد عددی و همچنین رویکرد اکتشافی توسعه داده شده است. برای این منظور توابع آموزشی گرادیان مزدوج شامل توابع فلچر-ریوس، پولاک-ریبره، پاول-بیل و گرادیان مزدوج مقیاسدار از دسته الگوریتمهای عددی و همچنین تابع پسانتشار ارتجاعی از دسته الگوریتمهای اکتشافی برای بهینهسازی پارامترهای مدل ANN استفاده شدند. در مرحلهی بعد با استفاده از آمارههای بررسی شده برای ارزیابی نتایج، بهترین مدل با ساختار شامل هر یک از توابع نامبرده انتخاب شدند و در ادامه از بین مدلهای منتخب، مدلی که بهترین عملکرد را داشت، یعنی مدل با تابع آموزش پسانتشار ارتجاعی، با توجه به آمارهی نسبت تفاوت توسعه یافته (DDR)، به عنوان نتیجه نهایی این مقاله برگزیده شد. در پایان نیز برای ارزیابی بهتر نتایج تحقیق، رویکردی مقایسهای بین نتیجه بهترین مدل توسعه داده شده با دیگر مطالعات انجام گرفته به وسیله مدلهای هوشمند انجام شد که یافتهها حاکی از عملکرد برتر مدل پسانتشار ارتجاعی بود.
similar resources
پیشبینی ضریب انتشار طولی در رودخانههای طبیعی با مدل توسعه یافته شبکه عصبی
هدف اصلی این مقاله پیشبینی ضریب انتشار طولی در رودخانههای طبیعی با استفاده از مدل توسعه داده شده شبکه عصبی مصنوعی بر مبنای توابع آموزش شبه-نیوتنی بود. به این منظور از اطلاعات هیدرولیکی و هندسه جریان استفاده گردید. مجموع کل اطلاعات مورد استفاده در این تحقیق، 100 سری داده بود که به سه دسته آموزش، دسته نظارت بر آموزش و دسته آزمایش تقسیم شد. در این تحقیق، ابتدا با دیدی انتقادی به مرور برخی از مهم...
full textپیش بینی ضریب انتشار طولی در رودخانه های طبیعی با مدل توسعه یافته شبکه عصبی
هدف اصلی این مقاله پیش بینی ضریب انتشار طولی در رودخانه های طبیعی با استفاده از مدل توسعه داده شده شبکه عصبی مصنوعی بر مبنای توابع آموزش شبه-نیوتنی بود. به این منظور از اطلاعات هیدرولیکی و هندسه جریان استفاده گردید. مجموع کل اطلاعات مورد استفاده در این تحقیق، 100 سری داده بود که به سه دسته آموزش، دسته نظارت بر آموزش و دسته آزمایش تقسیم شد. در این تحقیق، ابتدا با دیدی انتقادی به مرور برخی از مهم...
full textبررسی تجربی و مدلسازی شبکه عصبی برای پیشبینی ضریب شکست الکلهای خالص و مخلوط دوتایی
در این پژوهش ضریب شکست نمونه های خالص الکلهای نوع اول و مخلوطهای دوتایی آنها به دو روش تجربی و مدلسازی مورد بررسی قرار گرفت. در روش تجربی از دستگاه رفرکتومتر برای اندازه گیری ضریب شکست استفاده شد و در روش مدلسازی، با به کارگیری شبکه عصبی مصنوعی پرسپترون چندلایه مدلسازی شد. به همین منظور ورودی های شبکه مربوط به مواد خالص، دما، جرم مولکولی و گروه های عاملی CH3، CH2 و OH و برای مخلوط ها کسر مولی،...
full textتخمین ضریب پخش طولی آلاینده ها در مجاری روباز با استفاده از شبکه عصبی مصنوعی
انتقال طولی آلاینده ها یکی از مراحل مهم در فرآیند رقیق سازی آلاینده ها میباشد که شناخت آن از اهمیت ویژهایبرخوردار است. دشواری اندازه گیری ضریب انتشار طولی در رودخانهها نیاز به استفاده از روشهای مناسب مدلسازیدر پیشبینی این ضریب را بیشتر میکند. یکی از روشهای کارآمد مدل سازی شبکه عصبی مصنوعی است که یکی ازتکنیکهای هوش مصنوعی محسوب میشود. در این مدل بدون استفاده از معادلات پیچیده غیرخطی، میتوان دینا...
full textتوسعة مدلی مناسب بر مبنای شبکة عصبی مصنوعی و ماشین بردار پشتیبان برای پیشبینی بهنگام اکسیژنخواهی بیوشیمیایی 5 روزه
محدودیت سنسورهای سختافزاری برای اندازهگیری برخی مشخصههای کیفی آب مانند اکسیژنخواهی بیوشیمیایی 5 روزه (BOD5) که از لحاظ زمانی هزینهبر هستند، تلاشها را به سمت استفاده از سنسورهای نرمافزای برای پیشبینی بهنگام BOD5 سوق داده است. هدف اصلی مقاله مذکور نیز توسعة سنسور نرمافزاری مناسب بر مبنای مدلهای هوشمند شبکة عصبی مصنوعی (ANN) و ماشین بردار پشتیبان (SVM) برای تخمین بهنگام BOD5 در رودخانة س...
full textMy Resources
Journal title
volume 12 issue 41
pages 63- 78
publication date 2019-08-23
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023