توسعه شبکه عصبیتصمیم مبتنی بر الگوریتم ژنتیک برای ارزیابی ارجحیات در مسائل تصمیمگیری چندهدفه
Authors
Abstract:
بکارگیری شبکههای عصبی در تخمین و توصیف ساختار ارجحیتهای تصمیمگیرنده، در حل مسائل تصمیمگیری چندهدفه در سالهای اخیر بسیار مورد توجه قرار گرفته است. شبکه عصبی تصمیم رویکردی نوین برای تخمین تابع مطوبیت تصمیمگیرنده در مسایل چندهدفه است. توسعه و بهبود روشهای آموزش این نوع از شبکهها، یافتن راه حل مرجح در مسایل چندهدفه، به خصوص مسایل با ابعاد بزرگ را تسهیل مینماید. در این مقاله، به منظور غلبه بر مشکلات روشهای آموزشی مبتنی بر گرادیان و با هدف افزایش کارآیی شبکه عصبی تصمیم روش آموزشی آن توسعه داده شده است و از الگوریتم ژنتیک برای آموزش این شبکه عصبی استفاده میشود. برای تنظیم پارامترهای شبکه عصبی تابع هزینه بهبود یافتهای پیشنهادی میشود و بر اساس این تابع هزینه پارامترهای شبکه عصبی بهینهسازی میشوند. رویکرد پیشنهادی در حل چندین مثال کاربردی بکارگرفته شدهاست که نتایج نشان میدهند که رویکرد پیشنهادی روشی کارآ به منظور تخمین تابع مطلوبیت –بهخصوص غیرخطی- در حل مسائل تصمیمگیری چندهدفه میباشد. همچنین رویکرد پیشنهادی در تخمین توابع مطلوبیت مسائل چندهدفه گسسته نیز قابلیت بکارگیری دارد.
similar resources
الگوریتم ژنتیک آشوب گونه مبتنی بر حافظه و خوشه بندی برای حل مسائل بهینه سازی پویا
چکیده: اکثر مسائل موجود در دنیای واقعی یک مسئله بهینهسازی با ماهیتی پویا هستند، بهطوریکه مقدار بهینه سراسری آنها در طول زمان ممکن است تغییر کند، بنابراین برای حل این مسائل الگوریتمهایی نیاز داریم که بتوانند خود را با شرایط این مسائل بهخوبی سازگار نموده و بهینه جدید را برای این مسائل ردیابی نمایند. در این مقاله، یک الگوریتم ژنتیک آشوبگونه مبتنی بر خوشهبندی و حافظه برای حل مسائل پویا ارائ...
full textالگوریتم ژنتیک مبتنی بر کد واقعی با جهش هوشمند برای حل مسائل پخش بار اقتصادی غیرمحدب
در این مقاله، یک روش جدید برای حل مسائل پخش بار اقتصادی با استفاده از الگوریتم ژنتیک مبتنی بر کدهای واقعی با جهش هوشمند پیشنهاد می شود. در روش پیشنهادی کنترل لازم بر روی مقادیر مجموع کروموزوم ها صورت میگیرد در نتیجه نیازی به استفاده از هزینه جریمه در حل مسئله پخش بار اقتصادی نخواهد بود. این روش بر روی الگوریتم ژنتیک کلاسیک جهت حل مسائل پخش بار اقتصادی غیر محدب پیاده شده است .روش پیشنهادی قابلی...
full textبکارگیری الگوریتم NSGA-II برای حل مسائل مکانیابی چندهدفه
مکانیابی کاربریها یکی از مهمترین مسائل شهرسازی است که دارای مقیاسهای متفاوتی میباشد. هنگامیکه با یک مسئلهی مکانیابی کوچک مقیاس با شرایط و محدودیتهای اندک روبهرو باشیم می توان با استفاده از روشهای سنتی به جواب رسید ولی زمانی که با یک مسئلهی بزرگ مقیاس مکانیابی با شرایط و محدودیتهای زیاد روبهرو باشیم، مشکل بتوان بدون استفاده از هوش مصنوعی و الگوریتمهای تکاملی، مکان بهینه یا حتی نزد...
full textکاوش قوانین پیوستگی کمی در بازار سهام با استفاده از الگوریتم های فراابتکاری چندهدفه مبتنی بر الگوریتم ژنتیک
پیش بینی بازده سهام موضوعی مهم در حوزه مالی است که توجه محققان را برای سالهای بسیاری به خود جلب کرده است. سرمایه گذاران همواره در تلاش برای پیدا کردن راهی برای پیش بینی قیمت سهام و پیدا کردن سهام و زمان مناسب برای خرید و یا فروش هستند. اخیرا، از تکنیک های داده کاوی و تکنیک های هوش مصنوعی در این حوزه استفاده می شود. کشف قوانین پیوستگی یکی از رایج ترین روش های داده کاوی مورد استفاده جهت استخراج د...
full textالگوریتم ژنتیک مبتنی بر کد واقعی با جهش هوشمند برای حل مسائل پخش بار اقتصادی غیرمحدب
در این مقاله، یک روش جدید برای حل مسائل پخش بار اقتصادی با استفاده از الگوریتم ژنتیک مبتنی بر کدهای واقعی با جهش هوشمند پیشنهاد می شود. در روش پیشنهادی کنترل لازم بر روی مقادیر مجموع کروموزوم ها صورت می گیرد در نتیجه نیازی به استفاده از هزینه جریمه در حل مسئله پخش بار اقتصادی نخواهد بود. این روش بر روی الگوریتم ژنتیک کلاسیک جهت حل مسائل پخش بار اقتصادی غیر محدب پیاده شده است .روش پیشنهادی قابلی...
full textالگوریتم ژنتیک آشوب گونه مبتنی بر حافظه و خوشه بندی برای حل مسائل بهینه سازی پویا
چکیده: اکثر مسائل موجود در دنیای واقعی یک مسئله بهینهسازی با ماهیتی پویا هستند، به طوری که مقدار بهینه سراسری آنها در طول زمان ممکن است تغییر کند، بنابراین برای حل این مسائل الگوریتمهایی نیاز داریم که بتوانند خود را با شرایط این مسائل بهخوبی سازگار نموده و بهینه جدید را برای این مسائل ردیابی نمایند. در این مقاله، یک الگوریتم ژنتیک آشوبگونه مبتنی بر خوشهبندی و حافظه برای حل مسائل پویا ارائ...
full textMy Resources
Journal title
volume 4 issue 3
pages 127- 153
publication date 2019-09-23
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023