تشخیص بیماری دیابت نوع2 با استفاده از درخت تصمیم C4.5

author

  • صباغ گل, حامد مربی، کارشناسی ارشد مهندسی کامپیوتر، عضو هیات علمی گروه کامپیوتر، دانشگاه پیام نور، ایران
Abstract:

مقدمه: یکی از شایع‌ترین بیماری‌ها در دنیای امروز بیماری دیابت است و سالانه شیوع دیابت در سطح جهان حدود  درصد افزایش می‌یابد. استفاده از تکنیک‌های داده‌کاوی برای ایجاد مدل‌های پیشگویی کننده، جهت شناسایی افراد در معرض خطر برای کاهش عوارض ناشی از بیماری بسیار کمک‌کننده است. در این پژوهش با استفاده از درخت تصمیم C4.5 به روش‌های پیشگیری و تشخیص این بیماری پرداخته شد. روش:  در این پژوهش کاربردی- توصیفی از داده‌های استاندارد UCI و مجموعه داده pima-indians-diabetes استفاده شد. این پایگاه داده شامل 768 رکورد با 8 فیلد می‌باشد. تجزیه و تحلیل به کمک نرم‌افزار Weka 3.6 با به‌کارگیری روش CRISP3 انجام شد. در بخش مدل‌سازی درخت تصمیم C4.5 با به‌کارگیری متغیرهای ورودی و تعیین متغیر هدف ایجاد شد. همچنین جهت ارزیابی مدل از شاخص‌های حساسیت، ویژگی، دقت، ارزش اخباری مثبت و منفی استفاده شد. نتایج: با توجه به مدل استفاده شده مشخص شد که به ترتیب متغیرهای میزان بالای قند خون دوساعته، تعداد دفعات بالای حاملگی، سن بالا، فشارخون دیاستولیک بالا، سابقه خانوادگی و شاخص توده بدنی (BMI) بالا، بیشترین تأثیر را در ابتلا به بیماری دیابت نوع 2 دارا هستند. نرخ دسته‌بندی برابر با 73/8% و دقت الگوریتم C4.5 برابر با 79‌% به‌دست آمد. نتیجه‌گیری: در مقایسه با نتایج مطالعات انجام شده در حوزه داده‌کاوی بیماری دیابت، دقت به‌دست‌آمده الگوریتم پیشنهادی قابل قبول است. بیشترین عوامل تأثیرگذار بر بیماری دیابت شناسایی شدند. همچنین قوانینی استخراج شد که می‌تواند به عنوان الگویی در جهت پیشگویی احتمال ابتلا افراد به بیماری دیابت استفاده شود.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

تشخیص بیماری تب کریمه‌کنگو با استفاده از درخت تصمیم C4.5

مقدمه: با شروع فصل تابستان، بیماری بین انسان و حیوان، یعنی تب کریمه‌کنگو به سرعت شیوع پیدا می‌کند. تشخیص این بیماری با استفاده از آزمایش‌های لازم، در کمترین حالت زمانی حدود یک هفته به طول می‌انجامد. روش‌های داده‌کاوی و یادگیری ماشین متعددی برای ایجاد مدل‌های پیشگویی‌کننده جهت شناسایی افراد در معرض خطر وجود دارد. در این پژوهش از درخت تصمیم C4.5 به دلیل سادگی و کارآمدی‌‌اش به منظور تشخیص این بیما...

full text

تشخیص بیماری تب کریمه‌کنگو با استفاده از درخت تصمیم C4.5

مقدمه: با شروع فصل تابستان، بیماری بین انسان و حیوان، یعنی تب کریمه‌کنگو به سرعت شیوع پیدا می‌کند. تشخیص این بیماری با استفاده از آزمایش‌های لازم، در کمترین حالت زمانی حدود یک هفته به طول می‌انجامد. روش‌های داده‌کاوی و یادگیری ماشین متعددی برای ایجاد مدل‌های پیشگویی‌کننده جهت شناسایی افراد در معرض خطر وجود دارد. در این پژوهش از درخت تصمیم C4.5 به دلیل سادگی و کارآمدی‌‌اش به منظور تشخیص این بیما...

full text

تشخیص بیماری عروق کرونر قلبی با استفاده از درخت تصمیم C4.5

مقدمه: یکی از شایع‌ترین بیماری‌ها و علل مرگ و میر در دنیای امروز بیماری‌های قلبی است. استفاده از تکنیک‌های داده‌کاوی برای ایجاد مدل‌های پیشگویی کننده، جهت شناسایی افراد در معرض خطر برای کاهش عوارض ناشی از بیماری بسیار کمک کننده است. در این پژوهش با استفاده از درخت تصمیم C4.5 به روش‌های پیشگیری و تشخیص این بیماری پرداخته می‌شود. روش: این پژوهش از نوع کاربردی و توصیفی می­باشد. در این پژوهش از داد...

full text

تشخیص بیماری عروق کرونر قلبی با استفاده از درخت تصمیم C4.5

مقدمه: یکی از شایع‌ترین بیماری‌ها و علل مرگ و میر در دنیای امروز بیماری‌های قلبی است. استفاده از تکنیک‌های داده‌کاوی برای ایجاد مدل‌های پیشگویی کننده، جهت شناسایی افراد در معرض خطر برای کاهش عوارض ناشی از بیماری بسیار کمک کننده است. در این پژوهش با استفاده از درخت تصمیم C4.5 به روش‌های پیشگیری و تشخیص این بیماری پرداخته می‌شود. روش: این پژوهش از نوع کاربردی و توصیفی می­باشد. در این پژوهش از داد...

full text

مقایسه مدل شبکه عصبی مصنوعی و درخت تصمیم برای شناسایی و پیش بینی عوامل مرتبط با دیابت نوع2

هدف:  یکی از اهداف تحقیقات پزشکی تعیین عوامل مرتبط در پیش ­بینی بیماری می ­باشد. یکی از شایع ­ترین بیماری های متابولیک در ایران، دیابت می­باشد. هدف از این مطالعه شناسایی عوامل موثر در پیش بینی دیابت با استفاده از مدل­ های شبکه عصبی مصنوعی و درخت تصمیم می ­باشد. روش بررسی:  برای انجام مطالعه، پرونده 901 تن از افرادی که در سال­ های 91 و 92 به مراکز بهداشتی شهر مشهد مراجعه کرده بودند، استفاده گردی...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 2

pages  293- 303

publication date 2018-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023