تدوین و ارزیابی مدل های عصبی مصنوعی بمنظور برآورد مقادیر L*a*b* با استفاده از مقادیر RGB تصاویر رنگی به کمک بینایی رایانه ای
Authors
Abstract:
با توجه به نیاز استفاده از مقادیر رنگی L*، a* و b* به همراه دیگر پارامترهای رنگی از جمله مقادیر R، G و B در کاربردهای کنترل کیفیت رنگی مواد غذایی و کشاورزی، در این پژوهش روشی هوشمند بر پایه سامانه بینایی ماشین ، شبکههای عصبی مصنوعی MLP و روش آماری چند متغیره PLS برای تخمین مقادیر L*a*b* از مقادیر RGB تصاویر رنگی نمونههای مختلف زعفران تدوین گردید. تصاویر رنگی از 33 نمونه مختلف زعفران (165 تصویر) و از صفحات رنگی استاندارد (150 تصویر) تهیه شدند. به کمک سامانه بینایی ماشین توسعه داده شده تصاویر نمونهها دریافت و با استفاده از الگوریتمهای پردازش تصویر، پردازش و ویژگیهای رنگی RGB آنها استخراج گردید. از سوی دیگر ویژگیهای L*a*b* نمونهها توسط دستگاه رنگسنج (به روش هانتر لب) اندازهگیری شدند. مقادیر RGB و تبدیلات خطی آنها به عنوان ورودی مدلها و مقادیر مرتبط L*، a* و b* به ترتیب به عنوان خروجی و هدف مدلها در نظر گرفته شدند. در نهایت نتایج نشان داد که مدلهای MLP با دقت بالاتری و ضرایب رگرسیون مناسبتری نسبت به مدلهای PLS مقایر L*، a* و b* نمونه-های زعفران را تخمین میزنند (R2=0.99 و RMSE بترتیب برابر با 769/0، 953/0 و 785/0 برای تخمین هر سه ویژگی L*، a* و b*). در نهایت میتوان امکان استفاده از سامانه بینایی ماشین را برای کنترل کیفیت رنگی زعفران بیان کرد.
similar resources
تقریب مقادیر ویژه ورق با استفاده از شبکه عصبی مصنوعی
هدف از این مقاله، تعیین فرکانس زاویهای طبیعی ورقها با توجه به شرایط مختلف تکیهگاهی به کمک شبکه عصبی مصنوعی است. یکی از مشهورترین روشهای آموزش شبکه عصبی، استفاده از الگوریتم انتشار برگشتی است. این الگوریتم برای آموزش شبکههای چند لایه قابل کاربرد است. الگوریتم انتشار برگشتی بر مبنای کاهش گرادیان بوده و در آن شیب خطا به تدریج کم شده و وزنهای شبکه برای رسیدن به حداقل خطا، تعدیل میشود. در این...
full textبرآورد استحکام فشاری ماسه ریخته گری در مقادیر گوناگون رطوبت با استفاده از شبکه عصبی مصنوعی
کیفیت قطعات ریخته گری در قالب گیری ماسه به گونهای چشم گیر به خواص ماسه مورد استفاده از قبیل استحکام فشاری، نفوذپذیری، سختی قالب و... بستگی دارد که این خواص نیز به پارامترهایی مانند رطوبت، اندازه و شکل دانه ماسه، میزان چسب و... بستگی دارند. در این مقاله، تعداد 84 آزمایش عملی برای بدست آوردن داده های مورد نیاز برای شبیه سازی که همان استحکام فشاری ماسه در درصد رطوبت های معین بودند، انجام گرفته اس...
full textتقریب مقادیر ویژه ورق با استفاده از شبکه عصبی مصنوعی
هدف از این مقاله، تعیین فرکانس زاویه ای طبیعی ورقها با توجه به شرایط مختلف تکیه گاهی به کمک شبکه عصبی مصنوعی است. یکی از مشهورترین روشهای آموزش شبکه عصبی، استفاده از الگوریتم انتشار برگشتی است. این الگوریتم برای آموزش شبکه های چند لایه قابل کاربرد است. الگوریتم انتشار برگشتی بر مبنای کاهش گرادیان بوده و در آن شیب خطا به تدریج کم شده و وزنهای شبکه برای رسیدن به حداقل خطا، تعدیل می شود. در این...
full textبرآورد استحکام فشاری ماسه ریخته گری در مقادیر گوناگون رطوبت با استفاده از شبکه عصبی مصنوعی
کیفیت قطعات ریخته گری در قالب گیری ماسه به گونه ای چشم گیر به خواص ماسه مورد استفاده از قبیل استحکام فشاری، نفوذپذیری، سختی قالب و... بستگی دارد که این خواص نیز به پارامترهایی مانند رطوبت، اندازه و شکل دانه ماسه، میزان چسب و... بستگی دارند. در این مقاله، تعداد 84 آزمایش عملی برای بدست آوردن داده های مورد نیاز برای شبیه سازی که همان استحکام فشاری ماسه در درصد رطوبت های معین بودند، انجام گرفته اس...
full textبرآورد مقادیر نشت از سدهای خاکی با استفاده از روشهای هوش مصنوعی
استفاده از پتوی رسی در مخازن سدها یکی از روشهای اصلی کاهش نشت میباشد. در این مطالعه ابتدا با مدلسازی پتوی رسی در مخزن سد توسط روش المان محدود، با استفاده از تغییر پارامترهای موثر، 320 داده نشت بهدست آمد. اعتبارسنجی روش المان محدود نیز با مقایسه نتایج نشت حاصل از روش المان محدود و نتایج آزمایشگاهی صورت گرفت. برای بررسی مناسبترین مدل برای پیشبینی مقادیر نشت (حاصل از مدلسازیها) از پنج رو...
full textMy Resources
Journal title
volume 5 issue 1
pages 151- 158
publication date 2017-11-22
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023