بکارگیری الگو ترکیبی شبکه های عصبی مصنوعی با الگوریتم های فراکاوشی (ICA,PSO) در پیش بینی مدیریت سود

Authors

  • اقبال قادری دانشجوی دکتری حسابداری، گروه حسابداری، دانشگاه آزاد اسلامی واحد سنندج ، ایران
  • پیمان امینی استادیار حسابداری، گروه حسابداری، دانشگاه کردستان،سنندج،ایران
Abstract:

رویکردهای فراکاوشی عمدتاً بر اساس نظم و قواعد موجود در ارگانیسم‌های طبیعی الهام گرفته‌اند. این رویکرد‌ها امروزه کاربرد بسیاری در شاخه‌های مختلف پیدا کرده است. با توجه به اهمیت پیش‌بینی، شناخت روش‌ها در پیش‌بینی مدیریت سود می‌تواند اطلاعات مفیدی را برای ذینفعان فراهم آورد. تنوع عوامل بدست آمده ناشی از نتایج الگوهای خطی برای سنجش مدیریت سود موجب شده است سرمایه‌گذارن نسبت به کیفیت سود گزارش شده تردید نمایند. بنابراین هدف از این پژوهش ارائه الگوی بهینه‌تر برای پیش‌بینی مدیریت سود است. در مرحله نخست با استفاده از الگوی شبکه‌های عصبی الگوی اولیه خطی را بهینه نموده، سپس از الگوریتم‌های ازدحام ذرات و رقابت استعماری برای بهینه‌تر نمودن الگو استفاده گردید. از این رویافته‌های تجربی مربوط به بررسی 620 مشاهده (سال – شرکت) پذیرفته شده در بورس اورق بهادر تهران در بازه زمانی 1390 الی 1395 حاکی از سودمندی و تاثیر مثبت در روش‌های ترکیبی بر عملکرد پیش‌بینی مدیریت سود و همچنین وجود تفاوت معنادر بین میزان سودمندی روش‌های خطی و غیر‌خطی است. به عبارتی در صورت استفاده از الگوریتم‌ها در پیش‌بینی مدیریت سود دقت پیش‌بینی با حذف متغیر‌های ناکارآمد افزایش می‌یابد. افزون بر این یافته های پژوهش حاکی از عملکرد بهتر و مناسب الگوریتم رقابت استعماری نسبت به سایر الگوها در کارآمدی متغیر‌های گروه مدیریتی با دقت (8/95%) است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش بینی سطح مدیریت سود با استفاده از شبکه های عصبی مصنوعی...

اکثر تحقیقات انجام شده در حوزه مدیریت سود به بررسی انگیزه ها و عوامل موثر بر سطح مدیریت سود پرداخته اند، ولی از این متغیرها به طور مستقیم برای پیش بینی سطح مدیریت سود استفاده نشده است. در نتیجه تنها همبستگی بین مدیریت سود و این متغیرها بررسی شده است. از این رو، طراحی یک مدل برای پیش بینی سطح مدیریت سود به منظور کاهش ریسک بحران های مالی ناشی از مدیریت سود و کمک به سرمایه گذاران، اعتبار دهندگان و...

full text

بررسی دقت شبکه های عصبی مصنوعی و الگوریتم بهینه سازی کلونی مورچگان در پیش بینی مدیریت سود

شناخت کیفیت سود برای استفاده­کنندگان از اطلاعات حسابداری به دلیل ارزیابی عملکرد، پیش­بینی سودآوری و تعیین ارزش واقعی شرکت­ها بسیار حائز اهمیت است. هدف از این پژوهش بررسی دقت پیش‎بینی مدیریت سود با استفاده از شبکه‎های عصبی (ANN) و الگوریتم کلونی مورچگان (ACO) و مقایسه آن با مدل‎ خطی (LR) است. برای این منظور از 28 متغیر تاثیرگذار بر مدیریت سود در قالب چهار گروه (مالی، مدیریتی، شرکتی و حسابرسی) در...

full text

پیش بینی مصرف انرژی بخش کشاورزی ایران با استفاده از مدل ترکیبی الگوریتم ژنتیک و شبکه های عصبی مصنوعی

هدف از این مقاله ارزیابی الگوی ترکیبی شبکه­های عصبی مصنوعی و الگوریتم ژنتیک در پیش بینی تقاضای انرژی بخش کشاورزی ایران می­باشد. برای این منظور، از داده­های سالانه مصرف انرژی بخش کشاورزی کشور به عنوان متغیر خروجی مدل­های پیش­بینی و از داده­های سالانه جمعیت کل کشور و کل تولیدات بخش کشاورزی کشور به عنوان متغیرهای ورودی مدل­های پیش­بینی استفاده شد. در پایان به منظور مقایسه نتایج پیش­بینی مدل ترکیبی...

full text

کاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه

پیش‌بینی بارش یکی از مهم‌ترین مسائل در زمینه مدیریت بهینه منابع آب در بخش‌های مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیش‌بینی بارش زمستانه استان خراسان رضوی با استفاده از شبکه‌های عصبی مصنوعی می‌باشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقه‌ای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس...

full text

پیش بینی مدیریت سود با بکارگیری ترکیب مدل شبکه های عصبی مصنوعی و درختهای تصمیم

تعداد موارد بحران های مالی مربوط به شرکت های سهامی عام اخیرا افزایش یافته است، اما سرمایه گذاران و اعتباردهندگان به سختی قادر به پیش بینی بحران های مالی هستند، بویژه در مواردی که مدیریت سود نیز دخیل باشد. مدیریت سود، دستکاری کردن سود برای رسیدن به اهداف مدیریت با بکارگیری روش ها و فرآیندهای مطمئن می باشد. در ادبیات مدیریت سود، بسیاری از مطالعات مرتبط با مدیریت سود تنها بر شناسایی برخی عوامل مرت...

15 صفحه اول

پیش بینی سطح مدیریت سود با استفاده از شبکه های عصبی مصنوعی...

اکثر تحقیقات انجام شده در حوزه مدیریت سود به بررسی انگیزه ها و عوامل موثر بر سطح مدیریت سود پرداخته اند، ولی از این متغیرها به طور مستقیم برای پیش بینی سطح مدیریت سود استفاده نشده است. در نتیجه تنها همبستگی بین مدیریت سود و این متغیرها بررسی شده است. از این رو، طراحی یک مدل برای پیش بینی سطح مدیریت سود به منظور کاهش ریسک بحران های مالی ناشی از مدیریت سود و کمک به سرمایه گذاران، اعتبار دهندگان و...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 2

pages  213- 248

publication date 2020-08-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023