بهبود آشکارسازی مؤلفة P300 با استفاده از تلفیق روشهای مختلف زمانی، فرکانسی و مکانیِ استخراج ویژگی
Authors
Abstract:
دراین مقاله سیستمی مبتنی بر بازشناسی آماری الگو جهت تفکیک سیگنالهای حاوی P300 و فاقد آن، ارائه میشود. این سیستم- که بر روی دادگان P300-Speller مسابقات BCI 2005 کار میکند- از چهار بخش اصلی پیشپردازش، استخراج ویژگی، انتخاب ویژگی و طبقهبند تشکیل شده که تأکید اصلی این مقاله بر بخش استخراج ویژگی و بررسی کارایی ویژگیهای مختلف است. در مرحلة استخراج ویژگی، شش دسته ویژگی شامل قطعهبندی هوشمند، ضرایب موجک، الگوهای مکانی مشترک، ویژگیهای شکلی- زمانی، ویژگیهای فرکانسی و دسته ویژگی ترکیبی الگوهای مکانی مشترک و قطعهبندی، تعریف شدند که برخی از این ویژگیها (مانند ویژگیهای قطعهبندی هوشمند، الگوهای مکانی مشترک و ترکیبی) تا کنون یا مستقیماً برای آشکارسازی P300 به کار نرفته بودند و یا در موارد بسیار معدودی از آنها استفاده شده بود. سپس ویژگیها با معیارهای مختلفی به صورت تک تک و گروهی ارزیابی شدند و در نهایت ترکیبی بهینه از مجموع این ویژگیها به طبقهبند SWLDA داده شد. بدین ترتیب درصد صحت تشخیص مؤلفة P300 با این سیستم به 05/97% رسید که در قیاس با نتایج مطالعات قبلی در این حوزه، نتیجة برتری است.
similar resources
بهبود آشکارسازی مؤلفة p300 با استفاده از تلفیق روش های مختلف زمانی، فرکانسی و مکانیِ استخراج ویژگی
دراین مقاله سیستمی مبتنی بر بازشناسی آماری الگو جهت تفکیک سیگنالهای حاوی p300 و فاقد آن، ارائه می شود. این سیستم- که بر روی دادگان p300-speller مسابقات bci 2005 کار میکند- از چهار بخش اصلی پیشپردازش، استخراج ویژگی، انتخاب ویژگی و طبقهبند تشکیل شده که تأکید اصلی این مقاله بر بخش استخراج ویژگی و بررسی کارایی ویژگیهای مختلف است. در مرحلة استخراج ویژگی، شش دسته ویژگی شامل قطعهبندی هوشمند، ضرا...
full textبهبود آشکارسازی مؤلفه p۳۰۰ با استفاده از تلفیق روش های مختلف زمانی، فرکانسی و مکانیِ استخراج ویژگی
دراین مقاله سیستمی مبتنی بر بازشناسی آماری الگو جهت تفکیک سیگنال های حاوی p300 و فاقد آن، ارائه می شود. این سیستم- که بر روی دادگان p300-speller مسابقات bci 2005 کار می کند- از چهار بخش اصلی پیش پردازش، استخراج ویژگی، انتخاب ویژگی و طبقهبند تشکیل شده که تأکید اصلی این مقاله بر بخش استخراج ویژگی و بررسی کارایی ویژگی های مختلف است. در مرحله استخراج ویژگی، شش دسته ویژگی شامل قطعه بندی هوشمند، ضرا...
full textآشکارسازی مولفة P300 سیگنال مغزی با استفاده از الگوی زمانی مشترک وزندار
آشکارسازی پتانسیلهای وابسته به رخداد، یک پیشنیاز مهم در سیستمهای واسط مغز و کامپیوتر (BCI) مبتنی بر ERP است. برای افزایش درصد صحت طبقهبندی در این سیستمها، از روشهای فیلترینگ مختلفی استفاده میشود تا نرخ سیگنال به نویز بهبود یابد و در نتیجه تشخیص و طبقهبندی پتانسیلهای وابسته به رخداد آسان شود. پیش از این، عملکرد فیلترهای الگوی مکانی مشترک (CSP) و الگوی زمانی مشترک (CTP) که بهترتیب فیلت...
full textتلفیق تصاویر دمای سطح زمین مودیس و لندست-8 با استفاده از مدل تلفیق مکانی-زمانی تصویر
دستیابی به تصاویر ماهوارهای با قدرت تفکیک مکانی و زمانی بالا بهصورت همزمان یکی از چالشهای جدی محققان در حوزه سنجش از دور و کاربردهای آن بوده است. در سالهای اخیر، محققان تلاش جدی برای حل این مسئله انجام دادهاند. استفاده از تکنیک تلفیق مکانی و زمانی تصاویر، ایدهای بوده که در چند سال اخیر مورد توجه بسیاری قرار گرفته است. در این مطالعه با استفاده از الگوریتم تلفیق مکانی-زمانی تصویر (STI-FM)...
full textحذف خودکار آرتیفکت چشمی از سیگنال های مغزی با استفاده از ویژگی های آماری و زمانی- فرکانسی مولفه های مستقل
مهمترین مشکل در بررسی و پردازش ثبت های الکتروآنسفالوگرام (EEG) حضور انواع سیگنال های ناخواسته (آرتیفکت ها) است که حذف آنها با روش تحلیل مولفه های مستقل از بهترین گزینه های ممکن است. هدف مساله تحلیل مولفه های مستقل جداسازی کور ترکیبی خطی از منابع مستقل است. با اعمال این روش روی سیگنال های مغزی آغشته به آرتیفکت، آرتیفکت ها به صورت مولفه های مستقلی استخراج می شوند. تشخیص خودکار مولفه های مستقل مرب...
full textارزیابی و مقایسه روشهای الگوهای مکانی مشترک و قطعهبندی هوشمند در آشکارسازی مؤلفه P300
هدف از این مقاله ارزیابی دو روش قطعهبندی هوشمند و الگوهای مکانی مشترک به عنوان دو راهکار استخراج ویژگی در سیستمهای آشکارسازی مؤلفهP300 است. بدین منظور، یک سیستم مبتنی بر بازشناسی آماری الگو طراحی شد. در این سیستم که با دادگان P300-Speller مسابقات BCI 2005 کار میکند، پس از اعمال پیشپردازشهای اولیه، دو دسته ویژگی قطعهبندی هوشمند و الگوهای مکانی مشترک از دادگان استخراج گردید. این ویژگیها از...
full textMy Resources
Journal title
volume 4 issue 4
pages 293- 306
publication date 2011-02-20
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023