بررسی عملکرد مدل شبکه عصبی موجک در تخمین دبی روزانه
Authors
Abstract:
سیل یکی از بلایای طبیعی مهمی است که همه ساله باعث ایجاد خسارتهای مالی و جانی فراوانی به جوامع مختلف میگردد. به همین دلیل محققین سعی نمودهاند که تغییرات کمی این پدیده را حتیالمقدور به طور دقیق مورد بررسی قرار دهند. در این پژوهش برای تخمین دبی روزانه ایستگاه بادآور نورآباد واقع در استان لرستان از مدل شبکه عصبی موجک استفاده شد و نتایج آن با سایر روشهای هوشمند ازجمله شبکه عصبی مصنوعی مقایسه گردید. برای این منظور از پارامتر حداکثر بارش 24 ساعته یک تا چهار روز قبل در مقیاس زمانی روزانه در طی دوره آماری (1391-1381) بهعنوان ورودی و دبی حداکثر روزانه بهعنوان پارامتر خروجی مدلها انتخاب گردید. معیارهای ضریب تعیین، ریشه میانگین مربعات خطا و میانگین قدر مطلق خطا برای ارزیابی و عملکرد مدلها مورداستفاده قرار گرفت. نتایج نشان داد هر دو مدل قابلیت خوبی در تخمین دبی روزانه دارند، مقایسه نتایج نشان داد مدل شبکه عصبی موجک عملکرد بهتری نسبت به مدل شبکه عصبی مصنوعی در مدلسازی دارد، بهگونهای که مدل شبکه عصبی موجک با بالاترین ضریب تعیین (920/0)، جذر میانگین مربعات خطا (005/0) و نیز میانگین قدر مطلق خطا (003/0) در مرحله صحت سنجی در اولویت قرار گرفت. درمجموع نتایج نشان داد استفاده از مدل شبکه عصبی موجک میتواند درزمینه تخمین دبی روزانه مفید باشد.
similar resources
کاربرد مدل شبکه عصبی موجک در تخمین شاخص بارش استاندارد
خشکسالی یکی از پدیدههای آب و هوایی است که در همه شرایط اقلیمی و در همه مناطق کره زمین به وقوع میپیوندد. پیشبینی خشکسالی نقش مهمی در طراحی و مدیریت منابع طبیعی، سیستمهای منابع آب، تعیین نیاز آبی گیاه ایفا مینماید. بدین منظور در این پژوهش از دادههای 4 ایستگاه بارانسنجی نورآباد، بروجرد، الشتر و دورود واقع در استان لرستان، به بررسی خشکسالی با استفاده از شاخص بارش استاندارد SPI در مقیاسهای ز...
full textکاربرد مدل سازی شبکه عصبی مصنوعی در تخمین ضریب دبی سرریزهای خطی
سرریزها از جمله سازه های مهم هیدرولیکی هستند که در کانال ها و شبکه های آبرسانی موارد استفاده فراوانی دارند. از رایج ترین انواع سرریزها می توان به سرریزهای مستطیلی، مثلثی و ذوزنقه ای اشاره نمود. در این مطالعه روشی بر اساس مدل سازی شبکه های عصبی مصنوعی، به منظور تعیین ضریب دبی این دسته از سرریزها که به علت داشتن تابع عرضی خطی تحت عنوان کلی سرریزهای خطی بیان شده اند، ارائه شده است. شبکه عصبی مصنوع...
full textتخمین تبخیر و تعرق مرجع روزانه به کمک مدل درخت تصمیمM5 و شبکه عصبی مصنوعی
تعیین دقیق آب مصرفی گیاه باعث افزایش راندمان آبیاری و بهبود مدیریت آب در مزرعه را دنبال دارد. تبخیر و تعرق یک از اجزای اصلی چرخهی هیدرولوژی محسوب میشود و برآورد دقیق آن در مدیریت منابع آب نقش اساسی دارد. در این تحقیق به ارزیابی مدل درختی M5 و مدل شبکهی عصبی تحت شرایط مختلف حداقل دادهی اقلیمی در یک منطقهی خشک سرد پرداخته شد. دادههای مورد استفاده در این تحقیق شامل دمای حداقل و حداکثر، رطو...
full textعملکرد مدل شبکه عصبی مصنوعی و شبکه عصبی فازی تطبیقی در تخمین غلظت ذرات معلق در هوای شهر تهران
در سالهای اخیر رشد روز افزون جمعیت ، وسایل نقلیه و کارخانهها باعث افزایش آلودگی هوا و ایجاد مشکلات زیادی برای محیط زیست بشر و سلامتی انسان شده است. یکی از مهمترین آلایندهها، ذراتمعلق میباشد که سبب بروز مشکلات تنفسی و قلبی در انسان میشود. هدف از این مطالعه مقایسه مدلهای شبکهعصبیمصنوعی و شبکهعصبیفازی-تطبیقی در تخمین غلظت ذرات معلق در شهر تهران میباشد. در...
full textتخمین هوشمند دبی روزانه با بهره گیری از سامانه استنباط فازی - عصبی تطبیقی
در سال های اخیر، استفاده از تئوری مجموعه های فازی جهت مدل سازی پدیده های هیدرولوژیکی که دارای پیچیدگی و عدم قطعیت بالایی هستند، مورد توجه محققین قرار گرفته است. به همین دلیل، در این پژوهش از مدلی مبتنی بر منطق فازی (سیستم استنتاج فازی - عصبی تطبیقی4) برای انجام فرآیند پیش بینی جریان استفاده شده است. در این تحقیق، از سه پارامتر بارندگی، دما و دبی روزانه حوضه آبریز لیقوان چای برای پیش بینی جریان ...
full textMy Resources
Journal title
volume 42 issue 3
pages 105- 116
publication date 2019-09-23
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023