بررسی رفتار مصالح شن‌دار در بارگذاری زهکشی نشده مونوتونیک با استفاده از شبکه‌های عصبی مصنوعی

author

Abstract:

این مقاله امکان توسعه و بکارگیری شبکه‌های عصبی مصنوعی در مدل‌سازی نتایج آزمایش‌های مونوتونیک سه‌محوری قطر بزرگ روی انواع مصالح سنگریزه‌ای تیزگوشه، گردگوشه و مصالح شنی با درصدهای مختلف ریزدانه بهکار رفته در بدنه سدهای مهم کشور را ارائه می‌دهد. در ابتدا قابلیت شبکه‌های عصبی مصنوعی(ANNs) در مدل‌سازی منحنی های رفتاری تنش تفاضلی- اضافه فشار آب حفره‌ای - کرنش محوری بررسی شده است که دلالت بر قابلیت نسبتاً مناسب مدل در شبیه‌سازی رفتار مصالح شن‌دار دارد. بانک اطلاعات بکار رفته در شبکه، شامل 52 گزینه مختلف آزمایش سه محوری کرنش-کنترل تحت شرایط زهکشی نشده است. برای مسئله مورد نظر، یک برنامه شبکه‌های عصبی مصنوعی پیشخوراند سه لایه پرسپترون (MLP) در محیط MATLAB7 نوشته شد و شبکه بهینه (تعداد لایه‌های مخفی، تابع تبدیل و نوع آموزش شبکه) به طریق سعی و خطا، و با توجه به شاخص‌های خطا و تطابق با داده‌های آزمایشگاهی انتخاب شد. پارامترهای ورودی شبکه شامل تنش محدود‌کننده، دانسیته و درصد رطوبت بهینه، توزیع اندازه دانه‌ها و نرخ ایجاد کرنش می‌باشد. نتایج نشان می‌دهد که ANNs قابلیت بسیار مناسبی در تخمین منحنی‌های رفتاری یاد‌شده در کلیه موارد بررسی شده دارد. در ادامه قابلیت شبکه‌های عصبی مصنوعی(ANNs) در بدست آوردن حداکثر زاویه اصطکاک داخلی و نتاطی از منحنی‌های رفتاری شامل تنش های تفاضلی حداکثر و پسماند و اضافه فشارهای آب حفره ای در کرنش‌های نظیر بررسی شد. ضمناً از قابلیت تعمیم شبکه عصبی مصنوعی برای بررسی موارد آزمایش نشده مثل اثر تغییرات دانسیته و درصد کوچک‌تر از mm 2/0 هم بهره گرفته‌شد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

بررسی رفتار مصالح شن دار در بارگذاری زهکشی نشده مونوتونیک با استفاده از شبکه های عصبی مصنوعی

این مقاله امکان توسعه و بکارگیری شبکه های عصبی مصنوعی در مدل سازی نتایج آزمایش های مونوتونیک سه محوری قطر بزرگ روی انواع مصالح سنگریزه ای تیزگوشه، گردگوشه و مصالح شنی با درصدهای مختلف ریزدانه بهکار رفته در بدنه سدهای مهم کشور را ارائه می دهد. در ابتدا قابلیت شبکه های عصبی مصنوعی(anns) در مدل سازی منحنی های رفتاری تنش تفاضلی- اضافه فشار آب حفره ای - کرنش محوری بررسی شده است که دلالت بر قابلیت نس...

full text

پیش بینی رفتار مشتریان با استفاده از تکنیک شبکههای عصبی مصنوعی

امروزه روش های کمی، به یکی از مهم ترین ابزارهای پیش بینی برای اخذ تصمیمات و سرمایه گذاریهای کلان در بازارها تبدیل شده اند. دقت پیش بینی، یکی از مهم ترین فاکتورهای انتخاب روش پیش بینی است؛ شبکه های عصبی مصنوعی، برنامه های کامپیوتری منعطفی هستند که در سطح گسترده ای برای پیش بینی، با درجه بالایی از دقت به کار برده می شوند. امروزه میتوان با استفاده از تکنیک های داده کاوی و شبکه های عصبی به بررسی و ...

full text

پیش بینی رفتار تنش_کرنش مصالح شنی با استفاده از شبکه های عصبی مصنوعی

در این پژوهش رفتار مکانیکی مصالح درشت دانه شنی با استفاده از شبکه عصبی چند لایه پرسپترون، که از پرکاربردترین شبکه های عصبی مصنوعی در مسائل ژئوتکنیکی است، شبیه سازی شده است. ابتدا اطلاعات دقیقی از آزمون های منابع مختلف در سراسر کشور تهیه و عوامل مؤثر بر مقاومت برشی خاک های درشت دانه بررسی شده است. پس از حذف اطلاعات نادرست، روند یادگیری، آزمایش و پیش بینی شبکه طی شده است. در آموزش شبکه از الگو...

full text

تخمین هدایت هیدرولیکی اشباع در برخی از خاکهای استان ایلام با استفاده از شبکههای عصبی مصنوعی و روشهای رگرسیونی

هدایت هیدرولیکی اشباع ) Ks ( یکی از ورودیهای مهم در مدلسازی جریان آب و انتقال آلایندهها در خاک، طراحی سیستمهای آبیاری و زهکشی، مدلسازی آبهایزیرزمینی و فرایندهای زیستمحیطی است. اندازهگیری مستقیم Ks در مزرعه و آزمایشگاه میسّر میباشد؛ لیکن، معمولاً زمانبر، پرهزینه و دشوار بوده و در سطوحبزرگ نیز غیرعملی است. افزون بر این، بهدلیل غیرهمگن بودن خاک و خطاهای آزمایشگاهی، تا حدودی این اندازهگیریها غیرقابل ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 2

pages  2071- 2096

publication date 2014-11

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023