براورد رواناب با استفاده از استنتاج عصبی فازی و رگرسیون درحوضه ی آبریز دز
Authors
Abstract:
تخمین دبی جریان در حوضه آبریز، به دلیل تاثیر ان در مدیریت منابع آب، می تواند نقش اقتصادی مهمی داشته باشد.در این تحقیق، ازمدل های(ANN)،(SVR)و(ANFIS) جهت پیش بینی رواناب حوضه آبریز دزاستفاده شده است. همبستگی بین ایستگاه ها بررسی و ایستگاههای کمندان،زورآباد و دره تخت به دلیل همبستگی اندک با ایستگاههای اطراف،حذف شدند سپس به دلیل عدم بررسی دخالت انسانی، با استفاده از نرم افزارxlstatروند ایستگاهها بررسی و ایستگاههای فاقد روند انتخاب شدند.جهت ارزیابی عملکرد مدل ها ازضریب همبستگی(R)،ضریب نش-ساتکلیف (NSE)وریشه ی میانگین مربعات خطا(RMSE)استفاده شده است.نتایج این تحقیق حاکی از برتریANFISبا رویکردکلاسترینگ نسبت به رویکرد شبکه بندی است.مدل های(ANN)،(ANFIS)و(SVR) توانایی خوبی در شبیه سازی جریان حوضه آبریز دز داشته اند.
similar resources
مدلسازی بارش- رواناب با سیستم استنتاج فازی- عصبی تطبیقی (ANFIS) و رگرسیون خطی چندمتغیره (MLR)
در این پژوهش، کارآیی سیستم فازی- عصبی برای برآورد رواناب ناحیه کوهستانی حوضه هراز مورد ارزیابی قرار گرفت. هدف ایجاد مدلی با توابع و درجه عضویت مناسب است که بتواند رابطه بارندگی- رواناب را در یک حوضه بهدرستی برقرار کند. بدین منظور برای پیشبینی رواناب، 44 ترکیب مختلف از پارامترهای بارندگی، دما، تبخیر، دبی جریان و شاخص بارش پیشین با تأخیر زمانی بین آنها بهصورت روزانه طی دوره 32 سال آماری وارد م...
full textپیشبینی بلند مدت رواناب با استفاده از شبکه های عصبی مصنوعی و سیستم استنتاج فازی
مدلهای مفهومی بر مبنای هوش مصنوعی، اغلب برای پیشبینیهای کوتاه مدت و میان مدت هیدورلوژیکی به کار رفته اند. در این مقاله با استفاده از مفهوم تولید مجموعه ای از پیشبینیها1 (ESP) و تفکیک مدلسازی برای متغیرهای اقلیمیو هیدرولوژیکی، از مدلهای مفهومی برای پیشبینی بلندمدت حجم جریان رودخانه زاینده رود در محل ورودی به سد زاینده رود استفاده میشود. سیستم استنتاج فازی برای پیشبینی بار...
full textپیش بینی بلند مدت رواناب با استفاده از شبکه های عصبی مصنوعی و سیستم استنتاج فازی
مدلهای مفهومی بر مبنای هوش مصنوعی، اغلب برای پیش بینیهای کوتاه مدت و میان مدت هیدورلوژیکی به کار رفته اند. در این مقاله با استفاده از مفهوم تولید مجموعه ای از پیش بینی ها1 (esp) و تفکیک مدلسازی برای متغیرهای اقلیمی و هیدرولوژیکی، از مدلهای مفهومی برای پیش بینی بلندمدت حجم جریان رودخانه زاینده رود در محل ورودی به سد زاینده رود استفاده می شود. سیستم استنتاج فازی برای پیش بینی بارش فصلی به صور...
full textپیش بینی جریان رودخانه با استفاده از سامانه استنتاج فازی(FIS) وسامانه استنتاج فازی- عصبی تطبیقی(ANFIS)
این مقاله فاقد چکیده میباشد.
full textتاثیر توزیعهای احتمالاتی در افزایش دقت پیشبینی رسوب معلق با استفاده از شبکههای عصبی مصنوعی و سیستم استنتاج فازی-عصبی(مطالعه موردی: حوزه آبخیز سد دز)
توجه به ماهیت دادههای رسوب و انتخاب روشهای مناسب پردازش بر روی دادهها قبل از ورود به مدلهای هوش مصنوعی از جمله مواردی است که میتواند نتایج حاصل از شبیهسازیها را به واقعیت نزدیک سازد. در این تحقیق تأثیر روشهای پردازش دادههای رسوب قبل از ورود به دو مدل شبکههای عصبی مصنوعی و سیستمهای استنتاج فازی-عصبی در هفت ایستگاه حوضه سد دز مورد بررسی قرار گرفته است. بر این اساس با توجه به توزیعهای ...
full textپیشپردازش پارامترهای ورودی به شبکهی عصبی مصنوعی و سیستم استنتاج تطبیقی عصبی- فازی با استفاده از رگرسیون گام به گام و گاماتست بهمنظور تخمین تبخیر
فرایند تبخیر بهعلت نیاز به فاکتورهای اقلیمی مختلف و اثر متقابل این فاکتورها بر یکدیگر،یک پدیدهیغیرخطی و پیچیده است. یکی از مراحل پیچیده در مدلسازی غیرخطی، پیشپردازش پارامترهای ورودی برای انتخاب ترکیبی مناسب از آنها است. پیشپردازش دادهها سبب کاهش مراحل سعی و خطا و شناخت مهمترین پارامترهای مؤثر بر پدیدهی مورد نظر بهمنظور مدلسازی با استفاده از روشهای هوشمند میشود. در این پژوهش از دو ر...
full textMy Resources
Journal title
volume 13 issue 47
pages 57- 68
publication date 2019-08-23
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023