برآورد پتانسیل آلودگی آرسنیک آب های زیرزمینی شهرستان سنندج با استفاده از مدل شبکه عصبی مصنوعی
Authors
Abstract:
زمینه و هدف: شناسایی آبهای زیرزمینی آلوده به آرسنیک با استفاده از پارامترهای سطحی خاک و مدلسازی این رابطه در دو مدل شبکه عصبی مصنوعی و رگرسیون خطی چندگانه میتواند در مدیریت منابع آبی منطقه مفید باشد. مواد و روشها: در این مطالعه برآورد پتانسیل آلودگی آرسنیک آب های زیرزمینی سنندج با استفاده از مدل های رگرسیون خطی چندگانه و شبکه عصبی مصنوعی مورد آزمون قرار گرفت. در این راستا از بین چاه ها ی مجوزدار شهرستان سنندج 35 چاه با در نظر گرفتن حوضه آبریز، پراکندگی مناسب و ساختار زمین شناختی متفاوت انتخاب 0- شدند. نمونه های آب هر چاه در ظرف های پلی اتیلنی و در دمای 4 درجه سانتیگراد و نمونه های خاک از عمق 20 سانتیمتری خاک سطحی بالادست چاهها به صورت مرکب جمع آوری و به آزمایشگاه منتقل شدند. در آزمایشگاه غلظت آرسنیک نمونه های آب با دستگاه جذب اتمی به روش کوره اندازه گیری گردید. ویژگی های فیزیکی و شیمیای خاک شامل: آرسنیک، آرسنات، آرسنیت، فسفات، نیترات، آهن کل، آهن بیشکل، منگنز کل، منگنز بیشکل، درصد رس، اندازه گیری شدند. در ادامه دقت مدل های رگرسیون چندگانه و CEC و pH ، درصد شن، درصد سیلت، ماده آلی خاک شبکه عصبی مصنوعی برای بررسی رابطه بین پارامترهای ذکر شده خاک و آرسنیک موجود درآب مورد آزمون قرار گرفت. یافته ها: نتایج نشان داد که غلضت آرسنیک آبهای زیرزمینی منطقه کمتر از حد استاندارد است که این می تواند به دلیل بالا بودن غلظت آرسنات خاک های منطقه نسبت به آرسنیت و افزایش ظرفیت تبادل کاتیونی خاک تحت تأثیر ذرات رس، ماده آلی و اکسیدهای آزاد آهن باشد. نتیجه گیری: مقایسه ی دقت مدل ها نیز نشان داد که مدل شبکه عصبی با 835MAE=0/ و 118 RMSE=0/ و 156 R=0/ در مرحله آزمون دارایی دقت بیشتر و خطای کمتری MAE=0/ و 158 RMSE=0/ و 177 R=0/ در مرحله آموزش و 816 در برآورد آلودگی آرسنیک آبهای زیرزمینی نسبت به مدل رگرسیون خطی چندگانه است.
similar resources
برآورد دمای روزانه خاک با استفاده از شبکه عصبی مصنوعی
دمای خاک یکی از متغیرهای مهم در مطالعات هیدرولوژی، هواشناسی، کشاورزی و اقلیمشناسی است که اندازهگیری و برآورد آن ضروری است. با توجه به اینکه دمای خاک فقط در ایستگاههای سینوپتیک کشور اندازهگیری میشود، کمبود آن در نقاط فاقد ایستگاه از چالشهای بزرگ در بسیاری از مطالعات مرتبط با کشاورزی است. در این پژوهش، با استفاده از پارامترهای هواشناسی ایستگاه سینوپتیک شیراز در یک دوره 9 ساله (2008-2000) ب...
full textشبیه سازی شوری آب زیرزمینی با استفاده از شبکه عصبی مصنوعی(ANN) در سواحل استان مازندران
چکیده امروزه یکی از مسائل محدود کننده در بحث تأمین آب، مسئله کیفیت آب است. اندازه گیری پارامتر های کیفی آب زیر زمینی مستلزم صرف هزینه های زیاد و زمان بر می باشد. برآورد پارامترهای کیفی آب با استفاده از مدل ها موجب کاهش هزینه ها و دسترسی به آمار جامعی برای مدیریت منابع آب خواهد شد. در این تحقیق از شبکه عصبی مصنوعی (ANN) برای شبیه سازی شوری آب زیرزمینی در سواحل استان مازندران استفاده شد. بدین ...
full textبرآورد سطح آب زیرزمینی آبخوان دشت بیرجند با استفاده از مدل modflow و شبکه عصبی مصنوعی
آبهای زیرزمینی همواره به عنوان یکی از منابع مهم و عمده تأمین آب شرب و کشاورزی به ویژه در مناطق خشک و نیمه خشک مطرح بوده است. دشت بیرجند با قرار گرفتن در منطقه خشک، از آب های زیرزمینی به عنوان تنهاترین منبع تولید آب شیرین استفاده می کند. در همین زمینه پیش بینی نوسانات سطح آب زیرزمینی دشت می تواند کمک شایانی به برنامه ریزی و تصمیم گیری های بعدی، جهت تأمین دراز مدت آب شرب، کشاورزی و صنعت نماید. هد...
15 صفحه اولپیش بینی تراز آب زیرزمینی دشت شاهرود استفاده از شبکه عصبی مصنوعی تابع پایه شعاعی
Groundwater level prediction is an important issue in scheduling and managing water resources. A number of approaches such as stochastic, fuzzy networks and artificial neural network have been used for such prediction. A neural network model has been employed in this research for Shahrood plain groundwater level prediction. For this reason, statistical parameters of groundwater level fluct...
full textMy Resources
Journal title
volume 6 issue 1
pages 84- 98
publication date 2018-12
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023