برآورد سطح برگ بوته ذرت با استفاده از شبکه عصبی مصنوعی
Authors
Abstract:
This experiment was designed for easy and accurate estimation of corn plant leaf area with multilayer perceptron (MLP) neural network and conducted at Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran in 2013. Three plant densities (75, 85 and 95 thousand plants/ha) and five genotypes (Persia 454, 484, 565, 626 and 647) were considered as treatments. Samplings were conducted at various times (66, 80, 94 & 108 DAP). At each sampling, number of leaves per plant, number of green leaves, leaf length and width, plant leaf area, leaf and stem dry weight, plant height, stem diameter and biological yield were measured. Correlations analysis indicated that measured characteristics had positive significant correlation with plant leaf area (r≥0.859**) and they can be used as inputs for estimation of leaf area. Among these variables, the highest sensitivity was associated to leaf width, number of green leaves, leaf length, number of leaves per plant and stem diameter, respectively. However the model with a lower number of variable, i.e. including leaf width, number of green leaves and leaf length was more appropriate for quick estimation of leaf area. When a single input had been used for estimation of leaf area, leaf dry weight offered a better simulation than other variables (d = 0.989), so that 95.69% of leaf area changes was described through leaf dry weight (R2 = 0.9569) and it can estimate leaf area well (RMSE (%) = 15.67). In both methods of estimation for leaf area (by using single input and sensitivity analysis), the best fitted models were not affected by cultivar, plant density and interaction of these two factors. Therefore, a general model can be used for rapid and accurate leaf area estimation of genotypes and plant densities used in the experiment.
similar resources
برآورد دمای روزانه خاک با استفاده از شبکه عصبی مصنوعی
دمای خاک یکی از متغیرهای مهم در مطالعات هیدرولوژی، هواشناسی، کشاورزی و اقلیمشناسی است که اندازهگیری و برآورد آن ضروری است. با توجه به اینکه دمای خاک فقط در ایستگاههای سینوپتیک کشور اندازهگیری میشود، کمبود آن در نقاط فاقد ایستگاه از چالشهای بزرگ در بسیاری از مطالعات مرتبط با کشاورزی است. در این پژوهش، با استفاده از پارامترهای هواشناسی ایستگاه سینوپتیک شیراز در یک دوره 9 ساله (2008-2000) ب...
full textبرآورد دمای روزانه خاک با استفاده از شبکه عصبی مصنوعی
دمای خاک یکی از متغیرهای مهم در مطالعات هیدرولوژی، هواشناسی، کشاورزی و اقلیمشناسی است که اندازهگیری و برآورد آن ضروری است. با توجه به اینکه دمای خاک فقط در ایستگاههای سینوپتیک کشور اندازهگیری میشود، کمبود آن در نقاط فاقد ایستگاه از چالشهای بزرگ در بسیاری از مطالعات مرتبط با کشاورزی است. در این پژوهش، با استفاده از پارامترهای هواشناسی ایستگاه سینوپتیک شیراز در یک دوره 9 ساله (2008-2000) ب...
full textواسنجی معادلات برآورد شاخص سطح برگ محصولات ذرت و چغندرقند با استفاده از دادههای ماهوارهای سنجنده مودیس (شبکه آبیاری قزوین)
یکی از رایجترین روشهای تعیین تغییرات مکانی و زمانی شاخص سطح برگ (LAI) در مقیاس منطقهای استفاده از معادلات تجربی مبتنی بر تفاضل نرمالشدة بازتابش سطحی است. این تحقیق با هدف ارزیابی و واسنجی معادلات موجود در مراجع و بهینهسازی ضرایب این معادلات ریاضی برای برآورد LAI انجام گرفت. بدین منظور مقادیر LAIدر طول دورة رشد سه محصول اصلی کشت تابستانه در شبکة آبیاری قزوین اندازهگیری و مقادیر LAI ماهواره...
full textبرآورد تبخیر از تشت تبخیر ایستگاه سد تنظیمی دز با استفاده از روش شبکه عصبی مصنوعی
بیشتر بارندگی مناطق خشک و نیمه خشک بصورت تبخیر به جو باز می گردد پس تخمین تبخیر دربرآورد میزان آب در چرخه آب مهم خواهد بود. تبخیر وابسته به پارامترهای مختلفی است و برای برآورد آن نیاز به متغیرهای اقلیمی متفاوتی است و اثر متقابل این متغیرها بسیار پیچیده است لذا در بررسی آن باید روشهای دقیقی را بکار گرفت. در این تحقیق برای برآورد تبخیر از تشت ایستگاه سد تنظیمی دز از روش شبکه عصبی مصنوعی استفاده ش...
full textبرآورد تغییرات سطح پوشش جنگل های رودسر با استفاده از روش های طبقه بندی شبکه عصبی مصنوعی و حداکثر احتمال
امروزه کسب آگاهی و دانش در رابطه با پوشش گیاهی نقش مهمی را در مدیریت خاکها ایفا میکند. بااین وجود برآورد پوشش گیاهی به روش معمولی که شامل برآورد کلی از پوشش گیاهی است هم زمانبر است و هم اطلاعات چندان دقیقی را به دست نمیدهد. از این رو سنجش از دور فنآوری بسیار مفیدی است که به دلیل کاهش زمان و هزینه، بر سایر روشها ارجحیت داده میشود. در این تحقیق سعی بر آن شد با استفاده از تکنیکهای سنجش از د...
full textپیشبینی میزان واردات برنج و ذرت با استفاده از روش شبکه عصبی مصنوعی
در این مطالعه با هدف پیشبینی واردات برنج و ذرت، از روش شبکه عصبی مصنوعی و ARIMA استفاده شده و نتایج حاصل مورد مقایسه قرار گرفته است. بهمنظور انجام این بررسی، دادههای گمرک ایران در خصوص واردات برنج و ذرت برای سالهای 1360 تا 1383 مبنای محاسبه قرار گرفته است. از دادههای دوره 1380-1360 به منظور آموزش شبکه و از دادههای سه سال آخر برای بررسی قدرت پیشبینی استفاده شده است. نتایج مطالعه نشان ...
full textMy Resources
Journal title
volume 7 issue 3
pages 19- 32
publication date 2017-11
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023