استفاده از طبقه‌بند PCVM در سیستم واسط مغز- رایانه کاربرفرما به منظور بهبود تشخیص حرکت پا

Authors

  • راحله محمدی دانشجوی دکتری مهندسی پزشکی، گروه بیوالکتریک، دانشکده برق و کامپیوتر، دانشگاه تربیت مدرس
  • علی محلوجی‌فر دانشیار، گروه بیوالکتریک، دانشکده برق و کامپیوتر، دانشگاه تربیت مدرس
Abstract:

اساس سیستم‌های‌ واسط مغز-رایانه(BCI)کاربرفرما آشکارسازی و تشخیص بازه‌های رخداد یک فعالیت ذهنی مانند تصور حرکت از سیگنال خودبخودی مغز است که این مسأله به دلیل ماهیت غیرایستان و پیچیده سیگنال الکتروانسفالوگرام (EEG) مهمترین چالش در طراحی سیستم‌هایBCIاست. در این مقاله برای اولین بار از یک الگوریتم جدید طبقه‌بندی مبتنی بر یادگیری تنک به نامPCVM در طراحی سیستمBCIکاربرفرما استفاده شده است. هدف اصلی مقاله بررسی میزان موفقیت این طبقه‌بند در آشکارسازی بازه‌های وقوع حرکت پا در سیگنال پیوستهEEG است.PCVMدر مقایسه باSVM-که تاکنون عملکرد بسیار موفقی در سیستم‌هایBCI مبتنی بر حرکت و تصور حرکت داشته است- مزایای قابل توجهی از جمله ارائه خروجی به صورت احتمال تعلق دادگان به هر یک از طبقه‌ها و همچنین تعیین پارامترهای بهینه کرنل همزمان در الگوریتم یادگیری دارد. بعلاوه در این مقاله از فیلترهای با ضریب کیفیت ثابت به منظور تجزیه فرکانسی سیگنال استفاده شده است که به دلیل ماهیت قدرت تفکیک متغیر زمانی و فرکانسی در فرکانس‌های مرکزی مختلف، نقش مؤثرتری در تمایز الگوهای مربوط به بازه حرکت از سیگنال پس‌زمینه مغزی ایفا می‌کند. متوسط نتایج حاصل از طراحی سیستم کاربرفرما با استفاده از روش پیشنهاد شده در این مقاله برای دادگان ثبت شده از 7 کاربر حین انجام حرکت پا  بصورت %90= TPRو %4= FPRبدست آمد که در مقایسه با کارهای پیشین برای همین مجموعه دادگان، بهبود قابل ملاحظه‌ای (16% بهبودTPR و 2% بهبودFPR) حاصل شد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

استفاده از طبقه بند pcvm در سیستم واسط مغز- رایانه کاربرفرما به منظور بهبود تشخیص حرکت پا

اساس سیستم های واسط مغز-رایانه(bci)کاربرفرما آشکارسازی و تشخیص بازه های رخداد یک فعالیت ذهنی مانند تصور حرکت از سیگنال خودبخودی مغز است که این مسأله به دلیل ماهیت غیرایستان و پیچیده سیگنال الکتروانسفالوگرام (eeg) مهمترین چالش در طراحی سیستم هایbciاست. در این مقاله برای اولین بار از یک الگوریتم جدید طبقه بندی مبتنی بر یادگیری تنک به نامpcvm در طراحی سیستمbciکاربرفرما استفاده شده است. هدف اصلی مق...

full text

آشکارسازی حرکت پا در سیستم واسط مغز-رایانه کاربرفرما با استفاده از روش طبقه‌بندی مبتنی بر نمایش تنک سیگنال

سیستم‌های BCIکاربرفرما در مقایسه با سیستمهای BCIسنکرون، ارتباط طبیعی‌تر کاربر را با فضای خارج امکان‌پذیر می‌کنند. آشکارسازی بازه‌های وقوع حرکت در سیگنال پیوسته EEGمسأله‌ای کلیدی در طراحی سیستم‌های BCI  </spa...

full text

آشکارسازی حرکت پا در سیستم واسط مغز-رایانه کاربرفرما با استفاده از روش طبقه بندی مبتنی بر نمایش تنک سیگنال

سیستم های bciکاربرفرما در مقایسه با سیستمهای bciسنکرون، ارتباط طبیعی­تر کاربر را با فضای خارج امکان­پذیر می کنند. آشکارسازی بازه های وقوع حرکت در سیگنال پیوسته eegمسأله ای کلیدی در طراحی سیستم­های bci  کاربرفرما مبتنی بر حرکت است. در این مقاله با استفاده از ویژگی بعد فرکتالی در باندفرکانسی 6 تا 36 هرتز و طراحی طبقه بند مبتنی بر نمایش تنک سیگنال، پدیده نورولوژیک همزمانی وابسته به رخداد (ers)- که...

full text

بهینه سازی الگوریتم الگوهای مکانی مشترک به منظور بهبود عملکرد سیستم های واسط مغز - رایانه

الگوریتم الگوهای مکانی مشترک (csp)، به عنوان یکی از موفق ترین الگوریتم های استخراج ویژگی در سیستم bci شناخته می شود. در این پروژه به دنبال راه هایی برای بهبود استفاده از الگوریتم csp در سیستم های bci هستیم. از این جهت روش های انتخاب کانال های بهینه مورد بررسی قرار گرفته و روشی برای بهبود نتایج حاصل از استفاده الگوریتم csp ارائه شده است. در این روش به جای اعمال csp بر روی همه کانال ها، ابتدا کان...

طبقه‌بندی سیگنال‌های مغزی تصور حرکت دست چپ و راست در سامانه‌های واسط مغز و رایانه با استفاده از انتخاب ویژگی به کمک الگوریتم‌های فرا ‌ابتکاری

مقدمه: بازشناسی فعالیت‌های مختلف حسی- حرکتی در سامانه‌های واسط مغز و رایانه با مباحث بازشناسی الگو در ارتباط است. یکی از مسائل مهم در طراحی یک سامانه مؤثر واسط مغز و رایانه، چگونگی کاهش تعداد ویژگی‌های استخراج شده از سیگنال‌های مغزی است. استفاده از الگوریتم‌های انتخاب ویژگی یکی از مهم‌ترین مراحل در زمینه بازشناسی الگو می‌باشد. کاهش تعداد ویژگی‌ها می‌تواند در بهبود دقت و کارایی طبقه‌بند‌ها و در ...

full text

طبقه‌بندی سیگنال‌های مغزی تصور حرکت دست چپ و راست در سامانه‌های واسط مغز و رایانه با استفاده از انتخاب ویژگی به کمک الگوریتم‌های فرا ‌ابتکاری

مقدمه: بازشناسی فعالیت‌های مختلف حسی- حرکتی در سامانه‌های واسط مغز و رایانه با مباحث بازشناسی الگو در ارتباط است. یکی از مسائل مهم در طراحی یک سامانه مؤثر واسط مغز و رایانه، چگونگی کاهش تعداد ویژگی‌های استخراج شده از سیگنال‌های مغزی است. استفاده از الگوریتم‌های انتخاب ویژگی یکی از مهم‌ترین مراحل در زمینه بازشناسی الگو می‌باشد. کاهش تعداد ویژگی‌ها می‌تواند در بهبود دقت و کارایی طبقه‌بند‌ها و در ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 1

pages  39- 55

publication date 2013-05-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023