استفاده از شبکه های عصبی ترکیبی آموزش پذیر اصلاح شده برای پیش بینی روند قیمت سهام (مطالعه موردی : شرکت پتروشیمی خارگ)
Authors
Abstract:
این مقاله مطالعه ای برای مقایسه توان پیش بینی روند قیمت سه ام با استفاده از شبکه های عصبی ترکیبی آموزش پذیراصلاح شده در مقابل سایر شبکه های آموزش پذیر و غیر آموزش پذیر ترکیبی است . داده های تاریخی به کار رفته در اینتحقیق از شرکت پتروشیمی خارگ، پذیرفته شده در بورس اوراق بهادار ایران بدست آمده اند . شرکت پتروشیمی خا رگ ازبزرگترین تولید کنندگان ایرانی محصولات پتروشیمی از جمله متانول است و به دلیل صادرات محصولات، قیمت سهام آن دربورس اوراق بهادار ایران بسیار متأثر از قیمت جهانی محصولات پتروشیمی، به ویژه متانول، می باشد . بنابراین قیمت سهام آن،نسبت به شرکت هایی که فاقد صادرات محصولات به بازار های جهانی هستند، به گونه ای شفاف تغییر می نماید. از آنجا که دربورس اوراق بهادار ایران نمونه مشابه دیگری که دارای سابقه قیمتی کافی و تعداد سهام شناور بالا باشد 1 وجود ندارد، لذاسهام پتروشیمی خارگ مناسبترین گزینه برای انجام فرآیند تحقیق تشخیص داده شد . نتایج این تحقیق نشان می دهد کهچگونه شبکه های عصبی ترکیبی آموزش پذیر اصلاح شده می تواند گوی سبقت را در قابلیت پیش بینی روند قیمت سهام ازسایر شبکه های ترکیبی آموزش پذیر و غیر آموزش پذیر برباید . این تحقیق همچنان نشان می دهد که چگونه با استفاده ازروش پیشنهادی این مقاله می توان بدون نیاز به اطلاعات تفصیلی و جامع به قابلیت پیش بینی نسبتاً دقیقی دست یافت
similar resources
ترکیب شبکه های عصبی برای پیش بینی قیمت سهام
در این مقاله، یک مدل ابتکاری با ترکیب شبکه های عصبی مصنوعی (ANN) برای پیش بینی رفتار قیمت سهام پیشنهاد و اجرا می شود. این مدل ترکیبی، به صورت ساختار دو طبقه می باشد: شبکه های عصبی طبقه اول یا پیشگوهای پایه (Base Predictor) مسئول پیش بینی روزانه داده ها با ویژگی مختلف یک سهام می باشند و در طبقه دوم، شبکه دیگر، به عنوان ترکیب کننده پیش بینی نهایی را با بررسی و آنالیز اطلاعات پیشگوهای طبقه اول انج...
full textمدل ترکیبی شبکه های عصبی مصنوعی پیش خور و خود سازمانده کوهونن برای پیش بینی قیمت سهام
این مقاله ضمن ارائه مدلی ترکیبی از شبکه های عصبی مصنوعی، به بررسی توان پیش بینی کنندگی آنها در مقایسه با مدل های منفرد می پردازد. در این بررسی، با استفاده از شبکه های عصبی ترکیبی متشکل از شبکه های پیش خور و خود سازمانده کوهونن اقدام به پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام در بازار بورس تهران نشان می دهد ...
full textپیش بینی قیمت سهام شرکت های بورس اوراق بهادار تهران با استفاده از شبکه های عصبی مصنوعی
پیشبینی تغییر قیمت سهام به عنوان یک فعالیت چالشانگیز در پیشبینی سریهای زمانی مالی در نظر گرفته میشود. یک پیشبینی صحیح از تغییر قیمت سهام میتواند سود زیادی را برای سرمایهگذاران به بار آورد. با توجه به پیچیدگی دادههای بازار بورس، توسعه مدلهای کارآمد برای پیشبینی بسیار دشوار است. در این پژوهش، مدلی برای پیشبینی قیمت سهام شرکتهای بورس اوراق بهادار تهران با بکارگیری دادههای درونزا...
full textپیش بینی قیمت سهام شرکت فرآورده های نفتی پارس با استفاده از شبکه عصبی و روش رگرسیونی مطالعه موردی: قیمت سهام شرکت فرآورده های نفتی پارس
یکی از راه های تامین سرمایه برای سرمایه گذاری، انتشار اوراق قرضه و سهام از طریق بازار بورس می باشد. افراد در این بازار انتظار دستیابی به سود را دارند. اولین و مهم ترین عاملی که در اتخاذ سرمایه گذاری در بورس فراروی سرمایه گذار قرار دارد عامل قیمت سهام است که به تبع آن مقوله ارزیابی و پیش بینی قیمت آینده نیز مطرح می شود. فعالان در این بازار درصدد دستیابی و به کارگیری روش هایی هستند تا با پیش بینی...
full textMy Resources
Journal title
volume 21 issue شماره 2(پیاپی 85)
pages 159- 174
publication date 2010-06-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023