استفاده از سری های زمانی در شبکه های عصبی مصنوعی تکاملی به منظور ارزیابی آسیب پذیری در قاب بتنی خمشی

Authors

  • مهدی ر ندارد
  • پنام زرفام ندارد
Abstract:

پس از وقوع یک زلزله ، تصمیم گیری سریع در مورد ایمنی ساختمان،امکان ادامه بهره برداری از یکساختمان و تعیین موقعیت و میزان خرابی مورد نظر،بسیار مهم و حیاتی می باشد. امروزه تکنیک جدیداستفاده از مدل شبکه های عصبی مصنوعی تکاملی که مبتنی بر هوش مصنوعی می باشد کاربردگسترده ای در زمینه های مختلف علمی به ویژه مهندسی سازه و زلزله پیدا کرده است. در این مقاله یک1/5 تحلیل دینامیکی غیرخطی شده g 0/1 تا g قاب خمشی با 4 طبقه و 4 دهانه تحت سی رکورد از شتابو میزان آسیب کل قاب در هر رکورد و در هر شتاب محاسبه می گردد، سپس به تعیین خسارت بااستفاده از مدلهای شبکه عصبی مصنوعی تکاملی پرداخته می گردد. برای تعیین تعداد و تاخیر زمانیموثر داده های ورودی زلزله در مدلهای شبکه عصبی مصنوعی از روش همبستگی عرضیسریهای زمانی استفاده شد. با استفاده از الگوریتم ژنتیک ساختار مدلهای شبکه (Cross Correlation)عصبی مصنوعی از نظر تعداد لایه ها، تعداد گره ها در لایه پنهان، نوع تابع انتقال و الگوریتم یادگیریشبکه بهینه گردید. نتایج نشان می دهد که روشهای همبستگی عرضی به خوبی تعداد و تاخیر زمانیبه عنوان بهترین MLP موثر داده های ورودی را تعیین می نماید ، علاوه بر این با مقایسه خروجی مدلاز توانایی، MLP مدل با رگرسیون غیرخطی نسبت به شاخص پارک-انگ می توان نتیجه گرفت که مدلدقت و انعطاف پذیری مناسب تری برخوردار می باشند

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

کاربردهای شبکه های عصبی در پیش بینی سری های زمانی

استفاده از روش های غیر کلاسیک در شناسایی مدل و پیش بینی رفتار سیستم های پیچیده، مدتهاست در محافل علمی و حتی حرفه ای متداول و معمول شده است. در بسیاری از سیستم های پیچیده و خصوصا غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل آنها از طریق روش های کلاسیک و تحلیلی امری بسیار دشوار و حتی بعضا غیر ممکن می نماید، از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردا...

full text

ریزمقیاس کردن مکانی – زمانی سری های زمانی بارش با استفاده از مدل ترکیبی موجک – شبکه عصبی مصنوعی

با توجه به نیاز شبیه سازی سری های زمانی بارش در مقیاس های مختلف برای مقاصد مهندسی از یک طرف و عدم ثبت این پارامترها در مقیاس های ریز بدلیل مشکلات اجرایی و اقتصادی از طرف دیگر، ریزمقیاس کردن بارش به مقیاس مورد نظر، یک امر ضروری می باشد. در این مطالعه، برای ریزمقیاس کردن سری زمانی بارش ایستگاه های تبریز و سهند، با توجه به ویژگی های غیرخطی مقیاس های زمانی، مدل ترکیبی موجک - شبکه عصبی مصنوعی (WANN)...

full text

مقایسه ی مدل های شبکه های عصبی مصنوعی و سری های زمانی برای پیش بینی قیمت گوشت مرغ در ایران

     با توجه به اهمیت پیش بینی قیمت گوشت مرغ، در تحقیق حاضر قیمت این محصول با استفاده از روش ARIMA و شبکه های عصبی مصنوعی برای افق های زمانی یک ماهه، شش ماهه و دوازده ماهه پیش بینی گردید و این فرضیه که شبکه ی عصبی در پیش بینی قیمت گوشت مرغ از کارایی بیشتری نسبت به  مدل های سری زمانی برخوردار است، مورد بررسی قرار گرفت. داده های مربوط به این متغیّر برای دوره ی  زمانی1371:1 تا 1385:11 بوده و  از شر...

full text

پیش‌بینی تراز آب دریاچه ارومیه با استفاده از روش‌های سری زمانی، شبکه عصبی مصنوعی و شبکه عصبی- موجکی

دریاچه ارومیه دومین دریاچه شور جهان است و با توجه به معیارهای اجتماعی- اقتصادی و زیست محیطی نقش مهمی در منطقه شمال­غرب ایران دارد که در سالهای اخیر با مشکلاتی مواجه شده است و به دلیل خشکسالی، استفاده بیش از حد آب­های سطحی و ساخت سدها تراز سطح آب آن کاهش یافته است. یکی از فاکتورهای مهم که در مدیریت صحیح در هر زمینه­ای، تأثیر دارد، داشتن یک دید و نگرش مناسب از اتفاقات آینده در آن زمینه...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 2( شماره 6 تابستان 1389)

pages  17- 26

publication date 2010-06-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023