استفاده از الگوریتم ترکیبی عصبی کرم شب‌تاب و روش رگولاسیون بیزین جهت پیش‌بینی قیمت سهام

Authors

  • افسانه غلامی دانش اموخته کارشناسی ارشد مدیریت مالی دانشگاه ازاد اسلامی واحد فیروزاباد ، فیروزاباد ، فارس، ایران.
Abstract:

پیش‌بینی قیمت سهام در آینده هم برای خریداران سهام و هم برای فروشندگان آن از اهمیت بالایی برخوردار است. از این رو، جهت توسعه مدلی مبتنی بر هوش مصنوعی به منظور پیش‌بینی قیمت سهام در بازار ایران از شبکه‌های عصبی مصنوعی در این پژوهش استفاده گردیده است. از آنجایی که شبکه‌های عصبی مصنوعی می‌بایست جهت حصول بهینه‌ترین عملکرد دارای بهترین توپولوژی شبکه باشند، از الگوریتم فرا ابتکاری شناخته‌شده‌ای تحت عنوان کرم شب‌تاب جهت یافتن ساختار بهینه شبکه استفاده گردیده است. در نهایت نیز جهت حفظ هرچه بیشتر عمومیت شبکه از روش رگولاسیون بیزین، به جای روش های متداول آموزش، جهت آموزش شبکه استفاده گردیده است. بطور کلی، داده‌های مربوط به سه شرکت بزرگ: ایران خودرو، پتروشیمی شیراز و ذوب آهن اصفهان برای سه سال متوالی مورد جمع‌آوری قرار گرفته و از پارامترهای: حجم معاملات، قیمت بالا، قیمت پایین، قیمت باز، قیمت پایانی، EMA(5)، EMA(10)، RSI، William R%، Stochastic k%، Stochastic D%، و ROC بعنوان ورودی شبکه و از قیمت پایانی سهام در روز آینده بعنوان خروجی شبکه عصبی استفاده گردیده است. پس از توسعه مدل مرتبط با هر شرکت از پارامترهای آماری نظیر: مجذور میانگین مربعات خطا (RMSE)، انحراف از معیار خطا (SDE)، متوسط مطلق خطای نسبی (AARD)، ضریب رگرسیون (R2)و همچنین آنالیز گرافیکی نمودار خطای نسبی جهت سنجش دقت شبکه توسعه داده شده استفاده گردیده است. نتایج حاصل از آنالیز خطای شبکه‌های عصبی توسعه داده شده نشان می‌دهند که مدل‌های مذکور با دقت بسیار مناسبی قادر به پیش‌بینی قیمت سهام در روز آینده برای شرکت‌های ذکر شده می‌باشند.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش بینی قیمت سهام بااستفاده از الگوریتم کرم شب‌تاب (FA)

در این پژوهش به پیش‌بینی قیمت سهام 10 شرکت از شرکت‌های پذیرفته شده در بورس و تعدادی از شرکت‌های حاضر در فرابورس بااستفاده از الگوریتم کرم شب‌تاب  پرداخته شده است. این پژوهش ازنظر هدف، کاربردی، از نظر روش گردآوری اطلاعات شبه تجربی، توصیفی - پیمایشی و پس رویدادی است. همچنین ازنظر ابزارهای گردآوری اطلاعات، کتابخانه ای می باشد و بدلیل ماهیت مدل‌سازی و پیش‌بینی، ازنوع پژوهش استقرایی است. در این تحقی...

full text

کاربرد الگوریتمهای مختلف یادگیری در پیشبینی قیمت سهام با استفاده از شبکه عصبی

پیشبینی قیمت سهام یکی از موضوعهای مهم مالی است، چرا که دادههای قیمت سهام دارای تغییر پذیری زیاد، پیچیدگی، دینامیک و آشوبگونه است،بنابراین ارتباط نامشخص بین قیمت سهام و عوامل مؤثر کاملا پویا است. بنابراین مسأله پیشبینی قیمت سهام تنها بوسیله یک برنامه کامپیوتری کاردشواری است.در این تحقیق، ابتدا بوسیله آزمون گردش، امکان پیشبینی قیمت سهام شرکت صنایع ملی مس ایران بررسی گردید. سپس رابطه همبستگی هشتبر...

full text

شناسایی دستکاری قیمت سهام از طریق مدل ترکیبی الگوریتم ژنتیک – شبکه عصبی مصنوعی و مدل SQDF

هدف این پژوهش، شناسایی دستکاری قیمت سهام در بورس اوراق بهادار تهران می­باشد که از طریق مدل ترکیبی الگوریتم ژنتیک-شبکه عصبی مصنوعی (ANN-GA)[1] و مدل تابع تفکیکی درجه دوی تعدیل شده (SQDF)[2] انجام گرفته است. در این پژوهش از متغیرهای قیمت، حجم معاملات و سهام شناور آزاد برای تطبیق نتایج مدل و داده­های واقعی از دستکاری قیمت استفاده شده است. در مدل ترکیبی ابتدا داده­های مربوط به 316 شرکت از نخستین رو...

full text

پیش‌بینی روند تغییرات قیمت سهام با به‌کارگیری شاخص‌های تحلیل تکنیکی و استفاده از روش ترکیبی الگوریتم ژنتیک و شبکه عصبی مصنوعی: مطالعه موردی سهام ایران خودرو

همواره پیش‌بینی دقیق روند بازار سهام برای تصمیم‌گیری‌های مالی سرمایه‌گذاران مهم بوده است. استفاده از مجموعه‌ای از شاخص‌های تحلیل تکنیکی یکی از پرکاربردترین روش‌های پیش‌بینی‌های مالی است. تعیین پارامترهای مناسب این شاخص‌ها و همچنین ترکیب آن‌ها یکی از چالش‌های پژوهشگران است. از طرف دیگر، ماهیت غیرخطی و پویای تغییرات در روند بازار سهام موجب استفاده گسترده از روش‌های پیش‌بینی غیرخطی همچون شبکه عصبی...

full text

طراحی الگویی جهت پیش بینی قیمت طلا، با استفاده از الگوریتم پرواز پرندگان و الگوریتم ژنتیک و ارائه الگوریتم ترکیبی

امروزه سرمایه گذاری در بازارهای طلا، بخش مهمی از اقتصاد هر کشور را تشکیل می دهد؛ به همین دلیل پیش بینی قیمت طلا برای سرمایه گذاران از اهمیت ویژه ای برخوردار شده است تا بتوانند کمترین ریسک را در سرمایه گذاری خود داشته یاشند. در سالهای گذشته، از روش های کلاسیک برای پیش بینی  قیمت طلا استفاده می نمودند. درحالیکه بازار طلا یک سیستم غیر خطی است، لذا هدف پژوهش حاضر پیش بینی قیمت طلا در بازار بین المل...

full text

کاربرد الگوریتمهای مختلف یادگیری در پیشبینی قیمت سهام با استفاده از شبکه عصبی

پیشبینی قیمت سهام یکی از موضوعهای مهم مالی است، چرا که دادههای قیمت سهام دارای تغییر پذیری زیاد، پیچیدگی، دینامیک و آشوبگونه است،بنابراین ارتباط نامشخص بین قیمت سهام و عوامل مؤثر کاملا پویا است. بنابراین مسأله پیشبینی قیمت سهام تنها بوسیله یک برنامه کامپیوتری کاردشواری است.در این تحقیق، ابتدا بوسیله آزمون گردش، امکان پیشبینی قیمت سهام شرکت صنایع ملی مس ایران بررسی گردید. سپس رابطه همبستگی هشتبر...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 36

pages  295- 321

publication date 2018-09-23

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023