ارزیابی کارکرد مدل های برنامه ریزی ژنتیک و خودهمبسته میانگین متحرک در پیش بینی آبدهی روزانه در آبخیز امامه
Authors
Abstract:
کمبودمنابعآبو توجه به توسعهی پایدار،تأمینآبرا برای همهی نیازهایموجودناممکنکردهاست. از آنجا که پیشبینیدقیقجریان رودهادر مدیریتمنابعآب اهمیتبسزایی دارد، آبدهی رود با کاربرد مدلهای برنامهریزی ژنتیک و خودهمبستهی میانگین متحرک در آبخیز امامه، استان تهران مدلسازی و پیشبینی شد. از دادههای درازمدت باران، دما، آبدهی، رطوبت نسبی و تبخیر استفاده شد. نتایج نشان داد که برنامهریزی ژنتیک خطای کمتری دارد و توانستهاست بهخوبی آبدهی مشاهدهیی را تخمین بزند. مدل 54 با ورودیهای دما، باران، و تأخیرهای باران تا دو روز، و رطوبتنسبی و تبخیر و تأخیر جریان تا دو روز،بهترین مدل با خطای 0/001، 0/031، و 0/009 در مرحلهی آموزش، و 0/001، 0/032، و 0/009 در مرحلهی آزمایشبود. علاوه بر این، خطای مدلهای خطی خودهمبستهی میانگین متحرک بسیار بیشتر است، و نهتنها در آبدهیهای بیشتر، بلکه در آبدهیهای کم همکارکرد مناسبی ندارد، و نتوانستهاست نتیجهی رضایتبخشی بهدست دهد. استفاده از مدل برنامهریزی ژنتیک بهدلیل دقت بسیار زیاد با عملگرهای اصلی و دادههای بهمعیارشده توصیه میشود.
similar resources
پیش بینی جریان سالانه رودخانه با استفاده از مدل خودهمبسته تجمعی میانگین متحرک و رگرسیون فازی
رشد روزافزون جمعیت و محدودیت منابع آب سطحی در کشور، لزوم پیشبینی دقیقتر مقدار آورد رودخانه را به دلیل اهمیت در برنامهریزی و مدیریت منابع آب از جمله بهرهبرداری از مخازن و طراحی سازههای کنترل سیلاب با استفاده از ابزارها و روشهای نوین مدلسازی میطلبد. در این راستا، مدلهای سری زمانی از دیرباز مورد توجه هیدرولوژیستها بودهاند. هدف این تحقیق، ارزیابی کارآیی دو رهیافت کلی مدل سری زمانی و رگرسی...
full textپیش بینی جریان سالانه رودخانه با استفاده از مدل خودهمبسته تجمعی میانگین متحرک و رگرسیون فازی
رشد روزافزون جمعیت و محدودیت منابع آب سطحی در کشور، لزوم پیش بینی دقیق تر مقدار آورد رودخانه را به دلیل اهمیت در برنامه ریزی و مدیریت منابع آب از جمله بهره برداری از مخازن و طراحی سازه های کنترل سیلاب با استفاده از ابزارها و روش های نوین مدلسازی می طلبد. در این راستا، مدل های سری زمانی از دیرباز مورد توجه هیدرولوژیست ها بوده اند. هدف این تحقیق، ارزیابی کارآیی دو رهیافت کلی مدل سری زمانی و رگرسی...
full textمقایسه مدل های غیرخطی سری زمانی و برنامه ریزی ژنتیک در پیش بینی جریان روزانه رودخانه ها (مطالعه موردی: رودخانه باراندوزچای ارومیه)
در این مطالعه برای پیش بینی جریان روزانه رودخانه باراندوزچای ارومیه در دوره آماری 1388-1352، از مدل غیرخطی سری زمانی دوخطی و روش برنامه ریزی ژنتیک استفاده و نتایج بر اساس شاخص های آماری جذر میانگین مربعات خطا و ضریب همبستگی مورد مقایسه قرار گرفت. در مطالعه حاضر مدل دوخطی BL(1,11,1,1) با داشتن کمترین مقدار معیار اکایکه اصلاح شده به عنوان مدل مناسب سری روزانه انتخاب و پس از انجام آزمون نکویی براز...
full textبکارگیری مدل های ترکیبی میانگین متحرک خودرگرسیون انباشته فازی احتمالی به منظور پیش بینی نرخ ارز
full text
پیش بینی دبی های متوسط روزانه و ماهانه با استفاده از مدل های شبکه عصبی فازی و خودهمبسته میانگین متحرک (مطالعه موردی: حوضه رودخانه سفید)
پیش¬بینی جریان رودخانه یکی از مهم¬ترین ارکان در مدیریت منابع آب¬های سطحی به ویژه اتخاذ تدابیر مناسب در مواقع سیلاب و بروز خشکسالی¬ها است. به طور سنتی، مدل¬سازی و تجزیه و تحلیل سری¬های زمانی برای ساختن مدل¬های ریاضی در جهت تولید داده¬های هیدرولوژیکی در هیدرولوژی و منابع آب استفاده می¬شود. همچنین انتخاب ترکیب مناسب از پارامترهای ورودی. در این پژوهش برای پیش¬بینی دبی روزانه و ماهانه رودخانه سفید ا...
15 صفحه اولکاربرد شبکه های بیزین و برنامه ریزی ژنتیک در پیش بینی جریان روزانه رودخانه (مطالعه موردی: رودخانه باراندوزچای)
برآورد دقیق آبدهی رودخانه ها یکی از موارد مهم در پیش بینی خشکسالی، سیلاب، طراحی سازه های آبی، بهره برداری از مخازن سدها و کنترل رسوب می باشد.روشهای متعددی همچون مدلهای سریزمانی، شبکههای عصبی مصنوعی، منطق فازی و برنامهریزی ژنتیک برای پیشبینی جریان رودخانه به کار میرود. در مطالعه حاضر به منظور پیشبینی جریان رودخانه باراندوزچای از دو روش برنامهریزی ژنتیک و شبکههای بیزین استفاده شد. داده...
full textMy Resources
Journal title
volume 32 issue 2
pages 2- 18
publication date 2019-06-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023