ارزیابی کارایی شبکه‌های عصبی مصنوعی در مدل‌سازی زمان وینچینگ Timber Jack 450 C

Authors

  • اکبر نجفی دانشیار گروه جنگلداری دانشکدة منابع طبیعی دانشگاه تربیت مدرس، نور، ایران
  • هادی بیاتی دانشجوی دکتری مهندسی جنگل دانشکدة منابع طبیعی دانشگاه تربیت مدرس، نور، ایران
  • پرویز عبدالمالکی دانشیار گروه بیوفیزیک دانشکدة علوم زیستی دانشگاه تربیت مدرس، تهران، ایران
Abstract:

برآورد تولید تجهیزات جنگلی بخش مهمی از مدیریت هزینه‌ها در یک واحد جنگلداری است که با کاهش هزینه‌های عملیات همراه است. به عبارت دیگر، هزینه‌‌های بالای سرمایه‌گذاری در بهره‌برداری از جنگل دلیل خوبی برای تحقیقات مهندسی جنگل و همچنین مدل‌سازی زمان است. در این مطالعه از یکی از زیرمجموعه‌‌های هوش مصنوعی، که شبکه‌های عصبی مصنوعی نامیده می‌شود، به منظور مدل‌سازی زمان وینچینگ Timber Jack 450C، در جنگل‌های نکاچوب استفاده شد. برای جمع‌آوری داده‌های زمان وینچینگ روش مطالعة زمانی پیوسته به کار رفت. هم‌زمان با اندازه‌گیری زمان وینچینگ، عوامل مؤثر بر زمان وینچینگ‌ـ مانند شیب وینچینگ، فاصلة وینچینگ، تعداد بینه در هر نوبت وینچینگ، و حجم بار در هر نوبت وینچینگ‌ـ نیز بررسی شد. برای مدل‌سازی زمان وینچینگ، به کمک شبکه‌های عصبی مصنوعی، از دو شبکة عصبی پرسپترون چندلایه و تابع شعاع مدار استفاده شد. همچنین، به منظور مقایسة دقت شبکة عصبی مصنوعی با روش رایج رگرسیون، به کمک تحلیل رگرسیون، مدل ریاضی پیش‌بینی زمان وینچینگ تهیه شد. نتایج نشان داد شبکة عصبی RBF در مقایسه با شبکة MLP در پیش‌بینی زمان وینچینگ دقت بیشتری دارد. در هر دو شبکه متغیر فاصلة بینه تا مرکز مسیر چوب‌کشی بیشترین اهمیت را داشت. همچنین، مقایسة نتایج روش رگرسیون و شبکة عصبی نشان داد شبکه‌های عصبی مصنوعی دقت بیشتر و خطای کمتری در برآورد زمان وینچینگ دارند.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش‌بینی کارایی به کمک تأثیرپذیری غیرخطی از تأخیرهای زمانی در تحلیل پوششی داده‌ها با شبکههای عصبی مصنوعی

هدف: یکی از شیوه‌های مرسوم ارزیابی کارایی هر سازمان یا بنگاه، مقایسه آن با سایر رقبا یا نمونه‌های متناظر آن است. با این حال، در برخی پژوهش‌ها به سنجش کارایی یک واحد در مقایسه با خود در مرور زمان پرداخته شده و روند عملکرد یک واحد نسبت به گذشته خود ارزیابی شده است. هدف پژوهش جاری، پیش‌بینی کارایی یک واحد با استفاده از سری‌های زمانی عملکرد گذشته آن است. روش: این پژوهش به کمک مدل SBM و با استفاده ا...

full text

مدلسازی نفوذپذیری سیستم بیوراکتورغشایی با استفاده از شبکه عصبی مصنوعی

مدلسازی برای سیستم های پیچیده ای همچون بیوراکتور غشایی به دلیل امکان اجرای آزمایشهای مجازی زیاد در زمان کوتاه ابزاری قدرتمند است، اگرچه نیازمند اعتبار تجربی و تبدیل فرایند به مدل ریاضی می باشد. در این پژوهش به مدلسازی فرایند فیلتراسیون توسط شبکه های عصبی با استفاده از نرم افزار MATLAB 8.1 (2013) پرداخته شده و از داده های تجربی یک سیستم بیوراکتور غشایی غوطه ور مجهز به غشاء کوبوتا جهت تصفیه فاضلا...

full text

ارزیابی کارایی مدل‌های شبکه عصبی مصنوعی در تخمین عملکرد محصول زعفران بر اساس پارمترهای اقلیمی

زعفران به عنوان با ارزش ترین محصول کشاورزی و دارویی جهان جایگاه ویژه ای در بین محصولات صنعتی و صادراتی ایران دارد. در حال حاضر ایران بزرگترین تولیدکننده و صادرکننده زعفران در جهان است، بطوریکه بیش از 7/93 درصد تولید جهانی این محصول گران بها به ایران اختصاص دارد، اما علیرغم قدمت کشت زعفران و ارزش افزوده این محصول در مقایسه با بسیاری از محصولات زراعی رایج در کشور سهم کمتری از فناوری های نوین را ب...

full text

ارزیابی کارایی شبکه عصبی مصنوعی در پیش‌بینی میزان هدایت الکتریکی رودخانه زرینه رود

جهت بررسی کیفیت آب رودخانه زرینه رود تعداد 16 ایستگاه نمونه گیری انتخاب گردیده و بر روی نمونه ها آزمایشات مربــوط به پارامتر های درجه حرارت، قلیاییت، pH ، هدایت الکتریکی، اکسیژن محلول و آنیون ها و کاتیون های اصلی انجام پذیرفت. با مشخص شدن نتایج آزمایشات فیزیکی و شیمیایی و ایجاد ارتباط همبستگی به روش پیرسون، پارامتر های وابسته به پارامتر هدایت الکتریکی با در نظر گرفتن حداقل قیمت آزمایشات به عنوا...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 68  issue 4

pages  757- 769

publication date 2015-12-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023