ارزیابی و مقایسۀ سیستم استنتاج فازی- عصبی و شبکۀ عصبی مصنوعی پرسپترون چند لایه در برآورد هدایت هیدرولیکی اشباع خاک با استفاده از بافت خاک (مطالعۀ موردی: شبکۀ آبیاری دشت فتحعلی مغان)
Authors
Abstract:
اندازهگیری مستقیم ویژگیهای هیدرولیکی خاک وقتگیر و پر هزینه است اما میتوان این ویژگیهارا با بهرهگیری از داده های زودیاف مثل بافت خاک، جرم مخصوص ظاهری و با استفاده از روشهایی چون توابع انتقالی و سیستم استنتاج فازی- عصبی نیز به دست آورد. در این تحقیق برای برآورد هدایت هیدرولیکی اشباع خاک، ازمدلشبکۀ عصبی مصنوعی و سیستماستنتاجفازی-عصبیاستفاده شد. ورودیهای مدل، شامل درصد رس، سیلت و شن بود. معماری شبکۀ عصبی دارای 3 نرون در لایۀ ورودی، 11 نرون در لایۀ پنهان با تابع انتقال تانژانت سیگموئید و یک نرون در لایۀ خروجی با تابع انتقال خطی با 1000 تکرار بود و در تمام شبکه از سرعت یادگیری و مومنتم مساوی با 3/0 استفاده شد. سیستم استنتاج فازی- عصبی دارای 27 قانون است و برای تابع عضویت متغیرهای ورودی از تابع گوسین استفاده شد. همچنین، برای بهینه سازی سیستم استنتاج فازی- عصبی از روش هیبرید استفاده شد. برای ارزیابی عملکرد مدل از پارامترهای مجذور میانگین مربعات خطا (سانتیمتر بر روز)، درصد خطای نسبی، میانگین خطای مطلق (سانتیمتر بر روز)، ضریب جرم باقیمانده، راندمان مدل و ضریب تبیین استفاده شد که برای مدل فازی- عصبی به ترتیب 032/0، 627/0، 18/0، 0000023/0-، 999/0 و 997/0 به دست آمد. برای شبکۀ عصبی مصنوعی نیز با الگوریتم آموزشی لونبرگ– مارکوت در تخمین هدایت هیدرولیکی اشباع خاک این مقادیر به ترتیب 22/1، 44/1، 21/1، 00015/0-، 997/0 و 99/0 به دست آمد. نتایج تحقیق نشان میدهد که سیستم استنتاج فازی- عصبی نسبت به شبکۀ عصبی مصنوعی دقیقتر است و نسبت به دادههای اندازهگیری شده نتایجی نزدیکتر ارائه میدهد.
similar resources
استفاده از شبکه های عصبی مصنوعی برای برآورد هدایت هیدرولیکی اشباع از ویژگی های زودیافت خاک
full text
کاربرد شبکه عصبی مصنوعی در پیشبینی هدایت هیدرولیکی اشباع با استفاده از پارامترهای فیزیکی خاک
ویژگیهای هیدرولیکی خاک همچون هدایت هیدرولیکی اشباع و غیراشباع در مطالعات زیست محیطی نقش مهمی را ایفا مینمایند. از آنجائیکه اندازهگیری مستقیم این قبیل ویژگیهای هیدرولیکی خاک امری وقتگیر و هزینهبر است روشهای غیرمستقیمی چون توابع انتقالی و شبکههای عصبی مصنوعی بر مبنای پارامترهای سهل الوصول خاک توسعه یافتهاند. در این خصوص در این مطالعه، از شبکه عصبی مصنوعی به منظور تخمین هدایت هیدرولیک...
full textارزیابی مدلهای رگرسیونی و شبکه عصبی مصنوعی در تخمین هدایت هیدرولیکی اشباع خاک در مازندران
هدایت هیدرولیکی اشباع یکی از خصوصیات مهم هیدرولیکی در علوم مرتبط با آب، خاک و کشاورزی میباشد که در مدلسازی حرکت املاح و آب در خاک بسیار اهمیت دارد.اندازهگیری آزمایشگاهی و صحرایی آن دشوار، وقتگیر و پرهزینه بوده و امکان شناسایی تغییرپذیری مکانی و زمانی آن در مقیاس وسیع عملا وجود ندارد.امروزه با استفاده از روشهای غیرمستقیم مانند توابع انتقالی میتوان آن را با دقت بالایی برآورد نمود. پژوهش حاضر...
full textبرآورد هدایت هیدرولیکی اشباع خاک با استفاده از پارامترهای زودیافت خاک و شبکه عصبی مصنوعی
هدایت هیدرولیکی اشباع خاک، از مهمترین ویژگی های فیزیکی خاک است که اهمیتی ویژه در شناخت، بررسی و مدل سازی ترابری آب، املاح و آلاینده های محیط متخلخل زیرزمینی دارد. باوجود تحقیقات متعددی که پیرامون اندازه گیری مستقیم هدایت هیدرولیکی اشباع صورت گرفته است، این روش ها همچنان پرهزینه، زمان بر و تخصصی هستند. از این رو ضرورت برآورد هدایت هیدرولیکی اشباع با استفاده از روش های سریع، کم هزینه و با دقتی قا...
15 صفحه اولپهنهبندی هدایت هیدرولیکی اشباع لایه سطحی خاک با بافت لوم و لوم شنی دشت سیستان
هدایت هیدرولیکی اشباع خاک (Ks) یکی از پارامترهای اساسی در مطالعات حرکت آب و املاح در خاک و طراحی پروژوههای آبیاری و زهکشی است. بنابراین، شناخت الگوی توزیع مکانی آن از اهمیت فراوانی برخوردار میباشد. هدف از پژوهش حاضر پیشبینی الگوی پراکنش مکانی Ks در مزرعه تحقیقاتی سد سیستان با استفاده از روشهای میانیابی بوده است . برای این منظور تعداد 113 آزمایش نفوذ تک حلقهای بیرکن در خاکهای مزرعه با فوا...
full textMy Resources
Journal title
volume 16 issue 65
pages 37- 54
publication date 2016-01-21
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023