ارزیابی و مقایسه روش شبکه عصبی مصنوعی و نرم افزارHEC-HMS در شبیه‌سازی آبنمود بارش- رواناب در حوضه آبخیز معرف کسیلیان

Authors

  • رضا افشین شریفان گروه سازه های آبی، واحد شیراز،دانشگاه آزاد اسلامی،شیراز، ایران
  • فرشید صف شکن دانشگاه آزاد اسلامی، واحد داریون، باشگاه پژوهشگران جوان و نخبگان، داریون، ایران.
Abstract:

فرایند بارش- رواناب یک پدیده­ی کاملا" پیچیده و غیرخطی در آبشناسی و منابع آب می­باشد. در سالهای اخیر، شبکه‌های عصبی مصنوعی کاربرد گسترده­ای را در شبیه­سازی روابط غیرخطی و پیچیده مانند رابطه­ی بارش-رواناب پیدا کرده است. دراین تحقیق، به منظور شبیه­سازی آبنمود بارش-رواناب در حوضه­ی آبخیز معرف کسیلیان از روش شبکه­ی عصبی مصنوعی (با ساختار7-10-9) و نرم­افزار HEC-HMS استفاده گردید. به منظور آموزش بهتر نرم افزار شبکه­ی عصبی مصنوعی داده‌های بارندگی بر اساس الگوی زمانی، مطابق با توزیع بارندگی هاف، به چهار گروه تقسیم شدند. به­طورکلی نتایج این تحقیق نشان دادند که محدوده­ی قدرمطلق درصد خطای نسبی فراسنج­های QP، TP، Tb، 75w،50w، 50T و 75T شبیه‌سازی شده به وسیله­ی شبکه عصبی به ترتیب 97/51-02/0، 23/41- 55/0، 07/54- 26/0، 62/202- 23/0، 88/69- 52/0، 07/82- 21/2 و 76/57- 42/2 می‌باشند، در حالی­که با شبیه‌سازی به وسیله­ی نرم­افزار HEC-HMS این حدود به ترتیب 53/756- 58/0، 250-0، 18/141-0، 575-84/2، 86/167-93/0، 350-33/3 و 67/266-2 محاسبه شده­اند. با توجه به درصد خطای نسبی مربوط به فراسنج­های خروجی هر واقعه می‌توان نتیجه گرفت که شبکه­ی عصبی در اکثر موارد تمامی فراسنج­ها و شکل کلی آبنمود را به­خوبی و با خطای ناچیزی نسبت به نرم افزار HEC-HMS شبیه‌سازی نموده است، البته در بعضی موارد، نرم افزار HEC- HMS توانسته است که شبیه‌سازی بده اوج آبنمود، زمان پایه و شکل کلی آن را به خوبی، یا به ندرت دقیقتر از شبکه­ی عصبی انجام دهد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

شبیه سازی فرآیند بارش- رواناب با بکارگیری شبکه عصبی مصنوعی (ANN) و مدل HEC-HMS ( مطالعه موردی حوزه آبخیز کسیلیان)

برای شبیه سازی فرآیند بارش - رواناب در سطح حوزه آبخیز کسیلیان با مساحت حدود 68 کیلومترمربع واقع در شمال ایران، مدل (HEC-HMS) و روش شبکه عصبی مصنوعی(ANN) بکار گرفته شد. شبکه عصبی دارای قابلیت بالایی برای برقراری ارتباط بین داده های ورودی و خروجی و مدل(HEC-HMS) دارای قابلیت بالایی در بهینه سازی آبنمود شبیه سازی شده می باشد. عامل هدر رفت اولیه خاک به عنوان یک معیار کمی در برگیرنده سه فاک...

full text

مقایسه شبکه عصبی مصنوعی و مدل HEC – HMS در برآورد بارش – رواناب در حوضه آبریز رودخانه اعظم هرات

یکی از روشهایی که در زمینه های مختلف علمی استفاده شده و می تواند فرایند پیچیده بارش – رواناب را شبیه سازی کند، استفاده از مدلهای شبکه عصبی مصنوعی است. هدف این تحقیق بررسی کارآمدی شبکه های عصبی مصنوعی در شبیه سازی فرایند بارش- رواناب و مقایسه نتایج آنها با مدل HEC – HMS در حوضه آبریز رودخانه اعظم هرات در استان یزد است. داده های مورد استفاده در این تحقیق شامل بارندگی روزانه به همراه دبی روزانه و ...

full text

مدل‌سازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی و شبکه فازی- عصبی تطبیقی در حوزه آبخیز کسیلیان

     Rainfall runoff modeling and prediction of river discharge is one of the important practices in flood control and management, hydraulic structure design and drought management. The present article aims to simulate daily streamflow in Kasilian watershed using an artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS). The intelligent methods have the high potential for dete...

full text

مدل سازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی و شبکه فازی- عصبی تطبیقی در حوزه آبخیز کسیلیان

مدل­سازی فرآیند بارش - رواناب و پیش­بینی دبی رودخانه یک اقدام مهم در مدیریت و مهار سیلاب­ها، طراحی سازه­های آبی در حوزه­های آبخیز و مدیریت خشکسالی است. هدف این تحقیق شبیه­سازی جریان روزانه در حوزه آبخیز کسیلیان با استفاده از شبکه عصبی مصنوعی و شبکه عصبی- فازی تطبیقی است. روش­های هوشمند دارای قابلیت بالایی برای برقراری ارتباط بین داده­های ورودی و خروجی می­باشند. در این تحقیق از آمار بارش، تبخیر ...

full text

ارزیابی ضریب رواناب ناشی از بارش درحوزه معرف کسیلیان

هدف از این مطالعه تعیین ضریب رواناب ناشی از بارش می باشد.که بدین منظور ابتدا روشهای مختلف موجود مورد بررسی قرار گرفته است. یکی از روشهای مهم وتجربی برآورد رواناب. روش حفاظت خاک آمریکاست که بر اساس آن می توان میزان رواناب سطحی ناشی از بارش را با دردست داشتن ارتفاع باران و دیگر ویژگیهای حوزه اعم از خصوصیات فیزیکی ‘ نوع خاک‘ پوشش گیاهی ونحوه استفاده از زمین برآورد نمود. با توجه باینکه اطلاعات کامل...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 35

pages  71- 84

publication date 2018-02-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023