ارزیابی روش شبکۀ عصبی مصنوعی در پهنهبندی مکانی پتانسیل رویشگاه گونهها (مطالعۀ موردی: مراتع سیاه بیشه، مازندران)
Authors
Abstract:
هدف از تحقیق حاضر، پیشبینی پراکنش مکانی گونههای Festuca Ovina و Bromus briziformis در مراتع سیاه بیشه با استفاده از روش شبکۀعصبی مصنوعی است. نمونهبرداری از پوشش گیاهی به روش طبقهبندی تصادفی در 29 واحد همگن انجام شد. 290 پلات 1 مترمربعی در منطقه مستقر و درصد پوشش تاجی گیاهان ثبت گردید. در هر واحد، 3 نمونه خاک از عمق 30-0 برداشت شد. در این مطالعه، دادههای محیطی 20 عامل (شیب، جهت شیب، ارتفاع از سطح دریا، فاصله از جاده، فاصله از رودخانه، فاصله از دامداری، همباران، سنگ شناسی، سیلت، رس، شن، رطوبت، کربن، مادۀآلی، اسیدیته خاک، هدایت الکتریکی، آهک، ازت، فسفر و پتاسیم) به عنوان متغیر مستقل و دادههای مربوط به حضور گونههای گیاهی Festuca Ovina و Bromus briziformis به عنوان متغیر وابسته استفاده گردید. لایههای اطلاعاتی هر کدام از این عوامل در نرم افزار Arc GIS تهیه و با استفاده از روش نسبت فراوانی هر کدام از این عوامل کلاسهبندی شدند. نتایج حاصله نشان داد که مهمترین متغیرهای محیطی اثرگذار در پراکنش گونههای مطالعه شده، خصوصیات ارتفاع، بافت خاک و عناصر غذایی بودند.سپس به ترتیب 70 و 30 درصد دادهها جهت آموزش و آزمون شبکه استفاده شد. در این تحقیق ساختار شبکۀعصبی مصنوعی با ساختار 20 نرون در لایۀ ورودی و لایۀ پنهان و یک نرون در لایۀ خروجی، مقایر MSE برای فستوکا 75/0و بروموس 72/0 محاسبه شد. سپس نقشههای پهنهبندی گونههای گیاهی با 4 پهنۀ عدم حضور، حضورکم، متوسط و زیاد تهیه شد. نقشۀ پهنهبندی حاصل با منحنی ROC و ضریب کاپا ارزیابی شدند که صحت آنها با روش منحنی ROC برابر 10/97، 10/84 درصد و با ضریب کاپا برابر 78/0 و 66/0 به ترتیب برای گونۀ Festuca ovina، و گونۀ Bromus briziformis بودند که نشان دهندة ارزیابی خوب مدل است.
similar resources
برآورد حدود پراکنش مکانی گونه های گیاهی با روش شبکۀ عصبی مصنوعی در مراتع غرب تفتان
پژوهش حاضر با هدف برآورد حدود پراکنش گونه های گیاهی و تهیۀ نقشۀ پیش بینی پراکنش گونه ها با روش پرسپترون چندلایه، در مراتع غرب تفتان در شهرستان خاش انجام شد. برای این منظور، بعد از شناسایی و تفکیک رویشگاه گونه های موردبررسی، نمونه برداری از پوشش گیاهی بهروش تصادفی ـ منظم انجام شد. برای نمونه برداری از خاک در هر رویشگاه، شش نیمرخ حفر و از دو عمق 30-0 و 60-30 سانتی متری نمونه برداری شد. بعد از ا...
full textارزیابی قابلیت روش شبکههای عصبی مصنوعی در تهیه نقشه پیشبینی پراکنش رویشگاه گونههای گیاهی (مطالعه موردی: مراتع پشتکوه استان یزد)
پژوهش حاضر با هدف بررسی امکان استفاده از روش شبکه عصبی مصنوعی در برآورد حدود پراکنش مکانی، تهیه نقشه پیشبینی پراکنش رویشگاه گونههای گیاهی و شناخت نقاط قوت و ضعف این روش انجام شد. بدینمنظور بعد از تعیین واحدهای همگن با استفاده از مدل رقومی ارتفاع و نقشه زمینشناسی با مقیاس 1:25000، نمونهبرداری از پوشش گیاهی و عوامل محیطی انجام گرفت و نقشه مربوط به متغیرهای محیطی با استفاده از سیستم اطلاعات ج...
full textارزیابی عملکرد روشهای شبکۀ عصبی مصنوعی و زمینآمار در شبیهسازی پارامترهای کیفی آبهای زیرزمینی (مطالعۀ موردی: شهر کوهپایه، استان اصفهان)
آبهای زیرزمینی، مهمترین منبع آب مصرفی در مناطق خشک و نیمهخشک در بخشهای مختلف از قبیل کشاورزی، صنعت و شرب است. مدیریت این منابع آبی نسبت به آبهای سطحی مشکلتر و پرهزینهتر است. به همین دلیل باید به دنبال روشهایی معقول و مقرون به صرفه برای مشخصکردن وضعیت این آبها بود. در این مطالعه از روشهای زمینآماری کریجینگ و کوکریجینگ و همچنین شبکۀ عصبی پروسپترون چندلایه بهمنظور برآورد پارامترهای ک...
full textتهیه نقشه پیشبینی پراکنش مکانی رویشگاه گونههای گیاهی با استفاده از شبکههای عصبی مصنوعی در مراتع استان قم
این تحقیق با هدف ارزیابی قابلیت مدل شبکه عصبی مصنوعی در تهیه نقشه پیشبینی پراکنش رویشگاه گونههای گیاهی و شناخت نقاط قوت و ضعف این روش انجام شد. بدینمنظور بعد از تعیین واحدهای همگن با استفاده از مدل رقومی ارتفاع و نقشه زمینشناسی با مقیاس 1:25000، نمونهبرداری از پوشش گیاهی و عوامل محیطی انجام گرفت و نقشه مربوط به متغیرهای محیطی با استفاده از سیستم اطلاعات جغرافیایی و زمین آمار تهیه شد. مت...
full textپتانسیلیابی مناطق توسعۀ شهری با استفاده از شبکۀ عصبی مصنوعی (مطالعۀ موردی: شهر کرمانشاه)
رشد سریع شهرنشینی و توسعة شهری بهویژه در کشورهای درحالتوسعه، به درک الگو و فرایندهای پیچیدة رشد شهری با روش علمی و کارآمد نیاز دارد. لازمة ایجاد رشد شهری پایدار و برنامهریزی توسعة شهری، درک الگوهای صحیح رشد شهری است. کرمانشاه نهمین شهر پرجمعیت کشور و یکی از چهار شهر نخست ایران از نظر حادبودن معضل حاشیهنشینی است. هدف این پژوهش، بررسی پتانسیل توسعة شهری در این شهر است. بدینمنظور، شبکة عصبی...
full textارزیابی قابلیت مدل شبکه عصبی مصنوعی در پیش بینی پراکنش مکانی گونه های گیاهی (مطالعه موردی: مراتع طالقان میانی)
در این تحقیق قابلیت مدل شبکه عصبی در پیشبینی پراکنش مکانی گونههای گیاهی ارزیابی شده است. با توجه به هدف، اطلاعات پوشش گیاهی و عوامل رویشگاهی شامل اقلیم، خاک، پستی و بلندی و زمینشناسی جمعآوری شد. برای نمونهبرداری از پوشش گیاهی در هر تیپ رویشی، 3 ترانسکت150 متری مستقر و در هر ترانسکت 15 پلات با فواصل 10 متر (به روش تصادفی-سیستماتیک) مستقر شد. برای تجزیه و تحلیل اطلاعات و ارائه نقشه عوامل محی...
full textMy Resources
Journal title
volume 70 issue 3
pages 525- 539
publication date 2017-11-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023