ارزیابی تأثیر انتخاب ویژگی و توابع کرنل مختلف در عملکرد SVM برای تشخیص سرطان پستان

Authors

  • اروجی, اعظم دانشجوی دکترای انفورماتیک پزشکی، گروه مدیریت اطلاعات سلامت، دانشکده مدیریت و اطلاع رسانی پزشکی، دانشگاه علوم پزشکی ایران، تهران، ایران
  • لنگری زاده, مصطفی دکترای تخصصی انفورماتیک پزشکی، گروه مدیریت اطلاعات سلامت، دانشکده مدیریت و اطلاع رسانی پزشکی، دانشگاه علوم پزشکی ایران، تهران، ایران
Abstract:

مقدمه: سرطان پستان یکی از رایج‌ترین سرطان‌ها در میان زنان است. در تصاویر ماموگرافی، تشخیص تومورهای خوش‌خیم از بدخیم به دلیل شباهت ساختاری کاری دشوار و زمان‌بر است. یادگیری ماشین یک شاخه از هوش مصنوعی است که می‌تواند به صورت ابزاری کمکی در کنار پزشک قرار گیرد و آن‌ها را در تصمیم‌گیری یاری کند. ماشین بردار پشتیبان SVM یکی از رایج‌ترین روش‌های یادگیری ماشین است که عملکرد آن به نوع تابع کرنل و ویژگی‌های ورودی وابسته است. هدف این مطالعه، بررسی تأثیر انتخاب ویژگی و توابع کرنل مختلف در عملکرد SVM می‌باشد. روش: این مطالعه از نوع تحلیلی بود و با روش مقایسه‌ای انجام گرفت. انتخاب بهترین ویژگی‌ها توسط الگوریتم ژنتیک انجام شد. سپس SVM با توابع کرنلی مختلف شامل چندجمله‌ای، خطی، توابع شعاعی پایه، درجه دو و پرسپترون چندلایه ابتدا با تمام ویژگی‌ها و سپس با ویژگی‌های منتخب آموزش و ارزیابی شد. به منظور ارزیابی عملکرد طبقه‌بندها از مجموعه داده سرطان پستان ویسکانسین و پیاده‌سازی مدل‌ها در متلب انجام شد. نتایج: نتایج نشان داد که بعد از انتخاب ویژگی عملکرد SVM با تابع کرنل پرسپترون چندلایه کاهش و با تابع کرنل درجه دو افزایش یافت. با این حال، عملکرد توابع کرنل خطی و تابع شعاعی پایه در هر دو حالت مطلوب بود. به طور کلی، بعد از کاهش بعد، بهترین مقدار دقت، ویژگی، حساسیت و صحت به ترتیب به میزان 0/663‌، 0/833، 1/077 و 0/138 درصد کاهش یافت. نتیجه‌گیری: روش‌های مبتنی بر تکنیک‌های یادگیری ماشین می‌توانند پزشکان را در تصمیم‌گیری برای درمان یا تشخیص بیماری یاری کنند.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

ارزیابی کارآیی آسپیراسیون سوزنی پستان در تشخیص زودرس سرطان پستان

Fine-needle aspiration biopsy for the diagnosis of breast lesions has been used for more than six decades and has been established as an effective procedure in Europe for many years. In order to evaluate the accuracy of fine-needle aspiration with histopathologic confirmation, a retrospective study was performed in Iranian Center for Breast Cancer, using a computer database over one year period...

full text

انتخاب ویژگی مبتنی بر تئوری اطلاعات برای انتخاب ژن‌های مؤثر در تشخیص نوع سرطان با استفاده از داده‌های ریزآرایه

انتخاب ویژگی یکی از فرایندهای پیش پردازش داده‌ها در مباحث مربوط به یادگیری ماشین و داده‌کاوی محسوب می‌شود که در برخی زمینه‌ها نظیر کار با داده‌های ریزآرایه در بیوانفورماتیک که با مشکل ابعاد بالای داده‌ها در مقابل تعداد کم نمونه‌ها مواجه است، از اهمیت ویژه‌ای برخوردار است. انتخاب ویژگی‌های (ژن‌های) موثر در تشخیص بیماری از داده‌های ریزآرایه نقش مهمی در تشخیص زودهنگام بیماری و راه‌های مواجهه با آن...

full text

انتخاب ویژگی های موثر در تشخیص سرطان پستان با استفاده از مدل های پارامتریک یادگیری ماشین

چکیده مقدمه: آزمایش آسپیراسیون سوزنی روشی کم هزینه، آسان و سریع برای تشخیص دقیق و زود هنگام سرطان پستان است. با استفاده از خصوصیات استخراج شده از آزمایش آسپیراسیون سوزنی و با کمک تکنیک های یادگیری ماشین می توان سیستمی کارآمد را برای تشخیص سرطان پستان طراحی نمود که با دقت بالایی خوش خیم یا بدخیم بودن تومورهای پستان را تشخیص دهند. هدف از انجام این مطالعه، انتخاب ویژگی های موثر در تشخیص سرطان پستا...

full text

ارزیابی عملکرد توابع کرنل در تخمین جریان رودخانه‌ها با استفاده از ماشین بردار پشتیبان

سابقه و هدف: پیش‌بینی دقیق رواناب رودخانه‌ها نقش مهمی در مدیریت بهینه منابع آب در دسترس دارد. در سال‌های اخیر، ماشین بردار پشتیبان (SVM) که یکی از مهمترین مدل‌های داده‌کاوی است برای این منظور مورد توجه قرار گرفته است. این مدل یک سیستم یادگیری کارآمد بر مبنای تئوری بهینه‌سازی مقید است که از اصل استقرای کمینه‌سازی خطای ساختاری استفاده کرده و منجر به یک جواب بهینه کلی می‌گردد. همانند مدل‌های داده‌...

full text

معرفی یک سیستم هوشمند برای تشخیص دقیق سرطان پستان

مقدمه: تشخیص به‌موقع سرطان پستان به‌طور چشمگیری مرگ­ومیر ناشی از آن را در جامعه زنان کاهش می‌دهد. آزمایش آسپیراسیون سوزنی (FNA) روشی ساده، ارزان و غیرتهاجمی برای تشخیص دقیق و زودهنگام این سرطان است که امروزه تلاش می­شود به‌صورت هوشمند و ماشینی انجام گیرد.روش بررسی­: مراحل ایجاد یک سیستم هوشمند برای تشخیص سرطان پستان عبارت‌اند از: ثبت تصاویر میکروسکوپیک از نمونه FNA، استخراج ویژگی­های عددی از ای...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 2

pages  244- 251

publication date 2018-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023