G. Richter and S. Plass: Error and Erasure Decoding of Rank-Codes with a Modified Berlekamp-Massey Algorithm, in Proc. of ITG Conference on Source

نویسندگان

  • Gerd Richter
  • Simon Plass
چکیده

This paper investigates error and erasure decoding methods for codes with maximum rank distance. These codes can be used for correcting column and row errors and erasures in an ( ) array. Such errors occur e.g. in magnetic tape recording or in memory chip arrays. For maximum rank distance codes (Rank-Codes), there exists a decoding algorithm similar to the Peterson-Gorenstein-Zierler technique for Reed-Solomon codes and a decoding method based on Euclid’s Division algorithm. In this paper we introduce a modified Berlekamp-Massey algorithm for the decoding of rank errors and extend it for row erasures and rank errors. Also, we investigate a decoding algorithm for both row and column erasures and rank errors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coding Schemes for Crisscross Error Patterns

This paper addresses two coding schemes which can handle emerging errors with crisscross patterns. First, a code with maximum rank distance, so-called Rank-Codes, is described and a modified Berlekamp-Massey algorithm is provided. Secondly, a Permutation Code based coding scheme for crisscross error patterns is presented. The influence of different types of noise are also discussed.

متن کامل

A New Algorithm for Decoding Reed-solomon Codes

A new algorithm is developed for decoding Reed-Solomon codes. It uses fast Fourier transforms and computes the message symbols directly without explicitly finding error locations or error magnitudes. In the decoding radius (up to half of the minimum distance), the new method is easily adapted for error and erasure decoding. It can also detect all errors outside the decoding radius. Compared wit...

متن کامل

Algebraic Soft-Decision Decoding of Reed-Solomon Codes Using Bit-level Soft Information

The performance of algebraic soft-decision decoding (ASD) of Reed-Solomon (RS) codes using bit-level soft information is investigated. Optimal multiplicity assignment strategies (MAS) of ASD with infinite cost are first studied over erasure channels and binary symmetric channels (BSC). The corresponding decoding radii are calculated in closed forms and tight bounds on the error probability are ...

متن کامل

A Decoding Algorithm for Rank Metric Codes

In this work we will present algorithms for decoding rank metric codes. First we will look at a new decoding algorithm for Gabidulin codes using the property of Dickson matrices corresponding to linearized polynomials. We will be using a Berlekamp-Massey-like algorithm in the process. We will show the difference between our and existing algorithms. Apart from being a new algorithm, it is also i...

متن کامل

New array codes for multiple phased burst correction

Abstmct-A new optimal family of array codes over GF(q) for correcting multiple phased burst errors and erasures, where each phased burst corresponds to an erroneous or erased column in a code array, is presented. As for erasures, these array codes have an efficient decoding algorithm which avoids multiplications (or divisions) over extension fields, replacing these operations with cyclic shifts...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004