Asynchronous Stochastic Proximal Methods for Nonconvex Nonsmooth Optimization
نویسندگان
چکیده
We study stochastic algorithms for solving non-convex optimization problems with a convex yet possibly non-smooth regularizer, which nd wide applications in many practical machine learning applications. However, compared to asynchronous parallel stochastic gradient descent (AsynSGD), an algorithm targeting smooth optimization, the understanding of the behavior of stochastic algorithms for the non-smooth regularized optimization problems is limited, especially when the objective function is non-convex. To ll this gap, in this paper, we propose and analyze asynchronous parallel stochastic proximal gradient (AsynSPG) methods, including a full update version and a block-wise version, for non-convex problems. We establish an ergodic convergence rate ofO(1/ √ K ) for the proposed AsynSPG, K being the number of updates made on the model, matching the convergence rate currently known for AsynSGD (for smooth problems). To our knowledge, this is the rst work that provides convergence rates of asynchronous parallel SPG algorithms for non-convex problems. Furthermore, our results are also the rst to prove convergence of any stochastic proximal methods without assuming an increasing batch size or the use of additional variance reduction techniques. We implement the proposed algorithms on Parameter Server and demonstrate its convergence behavior and near-linear speedup, as the number of workers increases, for sparse learning problems on a real-world dataset.
منابع مشابه
The Sound of APALM Clapping: Faster Nonsmooth Nonconvex Optimization with Stochastic Asynchronous PALM
We introduce the Stochastic Asynchronous Proximal Alternating Linearized Minimization (SAPALM) method, a block coordinate stochastic proximal-gradient method for solving nonconvex, nonsmooth optimization problems. SAPALM is the first asynchronous parallel optimization method that provably converges on a large class of nonconvex, nonsmooth problems. We prove that SAPALM matches the best known ra...
متن کاملFast Stochastic Methods for Nonsmooth Nonconvex Optimization
We analyze stochastic algorithms for optimizing nonconvex, nonsmooth finite-sum problems, where the nonconvex part is smooth and the nonsmooth part is convex. Surprisingly, unlike the smooth case, our knowledge of this fundamental problem is very limited. For example, it is not known whether the proximal stochastic gradient method with constant minibatch converges to a stationary point. To tack...
متن کاملProximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization
We analyze stochastic algorithms for optimizing nonconvex, nonsmooth finite-sum problems, where the nonsmooth part is convex. Surprisingly, unlike the smooth case, our knowledge of this fundamental problem is very limited. For example, it is not known whether the proximal stochastic gradient method with constant minibatch converges to a stationary point. To tackle this issue, we develop fast st...
متن کاملThe Asynchronous PALM Algorithm for Nonsmooth Nonconvex Problems
We introduce the Asynchronous PALM algorithm, a new extension of the Proximal Alternating Linearized Minimization (PALM) algorithm for solving nonsmooth, nonconvex optimization problems. Like the PALM algorithm, each step of the Asynchronous PALM algorithm updates a single block of coordinates; but unlike the PALM algorithm, the Asynchronous PALM algorithm eliminates the need for sequential upd...
متن کاملA Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization
We analyze stochastic gradient algorithms for optimizing nonconvex, nonsmooth finite-sum problems. In particular, the objective function is given by the summation of a differentiable (possibly nonconvex) component, together with a possibly non-differentiable but convex component. We propose a proximal stochastic gradient algorithm based on variance reduction, called ProxSVRG+. The algorithm is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1802.08880 شماره
صفحات -
تاریخ انتشار 2018