Estimation of Individual Muscle Force Using Elastography
نویسندگان
چکیده
BACKGROUND Estimation of an individual muscle force still remains one of the main challenges in biomechanics. In this way, the present study aimed: (1) to determine whether an elastography technique called Supersonic Shear Imaging (SSI) could be used to estimate muscle force, (2) to compare this estimation to that one provided by surface electromyography (EMG), and (3) to determine the effect of the pennation of muscle fibers on the accuracy of the estimation. METHODS AND RESULTS Eleven subjects participated in two experimental sessions; one was devoted to the shear elastic modulus measurements and the other was devoted to the EMG recordings. Each session consisted in: (1) two smooth linear torque ramps from 0 to 60% and from 0 to 30% of maximal voluntary contraction, for the first dorsal interosseous and the abductor digiti minimi, respectively (referred to as "ramp contraction"); (2) two contractions done with the instruction to freely change the torque (referred to as "random changes contraction"). Multi-channel surface EMG recordings were obtained from a linear array of eight electrodes and the shear elastic modulus was measured using SSI. For ramp contractions, significant linear relationships were reported between EMG activity level and torque (R² = 0.949±0.036), and between shear elastic modulus and torque (R² = 0.982±0.013). SSI provided significant lower RMS(deviation) between measured torque and estimated torque than EMG activity level for both types of contraction (1.4±0.7 vs. 2.8±1.4% of maximal voluntary contraction for "ramp contractions", p<0.01; 4.5±2.3 vs. 7.9±5.9% of MVC for "random changes contractions", p<0.05). No significant difference was reported between muscles. CONCLUSION The shear elastic modulus measured using SSI can provide a more accurate estimation of individual muscle force than surface EMG. In addition, pennation of muscle fibers does not influence the accuracy of the estimation.
منابع مشابه
Quantifying the passive stretching response of human tibialis anterior muscle using shear wave elastography.
BACKGROUND Quantifying passive stretching responses of individual muscles helps the diagnosis of muscle disorders and aids the evaluation of surgical/rehabilitation treatments. Utilizing an animal model, we demonstrated that shear elastic modulus measured by supersonic shear wave elastography increases linearly with passive muscle force. This study aimed to use this state-of-the-art technology ...
متن کاملAnisotropic Elasticity & Viscosity Deduced from Supersonic Shear Imaging in Muscle
INTRODUCTION Although the role of viscoelasticity in muscle mechanics is well recognized, methods for measurement in situ are limited. Recent advances in elastography have made possible the imaging of viscoelastic moduli within individual muscles [1, 2]. We have investigated a new approach, supersonic shear imaging (SSI), which combines high frame-rate (5kHz) ultrasound with acoustic radiation ...
متن کاملDevelopment of a Simple Noninvasive Model to Predict Significant Fibrosis in Patients with Chronic Hepatitis B: Combination of Ultrasound Elastography, Serum Biomarkers, and Individual Characteristics
OBJECTIVES The accurate assessment of liver fibrosis is clinically important in patients with chronic hepatitis B (CHB). Blood tests and elastography are now widely used for the noninvasive diagnosis of liver fibrosis in CHB patients. The aim of this study was to develop a new and more accurate predictive model, which combines elastography data, serum biomarkers, and individual characteristics,...
متن کاملDeformation Correction in Ultrasound Imaging
Tissue deformation in ultrasound imaging is an inevitable phenomenon and poses challenges to the development of many techniques related to ultrasound image registration, including multimodal image fusion, freehand three-dimensional ultrasound, and quantitative measurement of tissue geometry. In this thesis, a novel trajectory-based method to correct tissue deformation in ultrasound B-mode imagi...
متن کاملThe Changes of Leg Musclus Activities Following Increase of Gait Velocity
Purpose: Motor control evaluation and analysis of it"s specifications for diagnosis of neuromuscular diseases is new approach in clinical electroneurophysiology, that is based on the changes of electromyography responses and classic reflexes in this field. In this study quantitative power spectrum frequency used for changes of motor control strategies. Materials and Methods: Twenty five health...
متن کامل