N-terminal residues in Cx43 and Cx40 determine physiological properties of gap junction channels, but do not influence heteromeric assembly with each other or with Cx26.
نویسندگان
چکیده
The cytoplasmic N-terminal domain in the connexins (Cx) has been implicated in determining several properties including connexin hetero-oligomerization, channel gating and regulation by polyamines. To elucidate the roles of potentially crucial amino acids, we produced site-directed mutants of connexins Cx40 and Cx43 (Cx40E12S,E13G and Cx43D12S,K13G) in which the charged amino acids at positions 12 and 13 were replaced with serine and glycine as found in Cx32. HeLa, N2a and HEK293 cells were transfected and studied by immunochemistry and double whole-cell patch clamping. Immunoblotting confirmed production of the mutant proteins, and immuno-fluorescence localized them to punctuate distributions along appositional membranes. Cx40E12S,E13G and Cx43D12S,K13G formed homotypic gap junction channels that allowed intercellular passage of Lucifer Yellow and electrical current, but these channels exhibited negligible voltage-dependent gating properties. Unlike wild-type Cx40, Cx40E12S,E13G channels were insensitive to block by 2 mM spermine. Affinity purification of material solubilized by Triton X-100 from cells co-expressing mutant Cx43 or mutant Cx40 with wild-type Cx40, Cx43 or Cx26 showed that introducing the mutations did not affect the compatibility or incompatibility of these proteins for heteromeric mixing. Co-expression of Cx40E12S,E13G with wild-type Cx40 or Cx43 dramatically reduced voltage-dependent gating. Thus, whereas the charged amino acids at positions 12 and 13 of Cx40 or Cx43 are not required for gap junction assembly or the compatibility of oligomerization with each other or with Cx26, they strongly influence several physiological properties including those of heteromeric channels.
منابع مشابه
Connexin43 and connexin26 form gap junctions, but not heteromeric channels in co-expressing cells.
Many cells contain two (or more) gap junction proteins that are able to oligomerize with each other to form heteromeric gap junction channels and influence the properties of intercellular communication. Cx26 and Cx43 are found together in a number of cell types, but previous data have suggested that they might not form heteromeric connexons. We studied the possible interactions of these connexi...
متن کاملFormation of heteromeric gap junction channels by connexins 40 and 43 in vascular smooth muscle cells.
Connexin (Cx) 43 and Cx40 are coexpressed in several tissues, including cardiac atrial and ventricular myocytes and vascular smooth muscle. It has been shown that these Cxs form homomeric/homotypic channels with distinct permeability and gating properties but do not form functional homomeric/heterotypic channels. If these Cxs were to form heteromeric channels, they could display functional prop...
متن کاملEngineered Cx26 variants established functional heterotypic Cx26/Cx43 and Cx26/Cx40 gap junction channels.
Gap junction (GJ) channels mediate direct intercellular communication and are composed of two docked hemichannels (connexin oligomers). It is well documented that the docking and formation of GJs are possible only between compatible hemichannels (or connexins). The mechanisms of heterotypic docking compatibility are not fully clear. We aligned the protein sequences of docking-compatible and -in...
متن کاملHeterotypic gap junction channel formation between heteromeric and homomeric Cx40 and Cx43 connexons.
Recent evidence indicating formation of functional homomeric/heterotypic gap junction channels by connexin40 (Cx40) and connexin43 (Cx43) raises the question of whether data previously interpreted as support for heteromeric channel formation by these connexins might not instead reflect the activity of homomeric/heterotypic channels. To address this question and to further characterize the behav...
متن کاملGap Junction Channels Exhibit Connexin-specific Permeability to Cyclic Nucleotides
Gap junction channels exhibit connexin dependent biophysical properties, including selective intercellular passage of larger solutes, such as second messengers and siRNA. Here, we report the determination of cyclic nucleotide (cAMP) permeability through gap junction channels composed of Cx43, Cx40, or Cx26 using simultaneous measurements of junctional conductance and intercellular transfer of c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 119 Pt 11 شماره
صفحات -
تاریخ انتشار 2006