The Kiss-and-Run Model of Intra-Golgi Transport
نویسندگان
چکیده
The Golgi apparatus (GA) is the main station along the secretory pathway. Mechanisms of intra-Golgi transport remain unresolved. Three models compete with each other for the right to be defined as the paradigm. The vesicular model cannot explain the following: (1) lipid droplets and aggregates of procollagen that are larger than coatomer I (COPI)-dependent vesicles are transported across the GA; and (2) most anterograde cargoes are depleted in COPI vesicles. The compartment progression/maturation model has the following problems: (1) most Golgi-resident proteins are depleted in COPI vesicles; (2) there are no COPI vesicles for the recycling of the resident proteins in the trans-most-Golgi cisterna; and (3) different proteins have different rates of intra-Golgi transport. The diffusion model based on permanent inter-cisternal connections cannot explain the existence of lipid, ionic and protein gradients across the Golgi stacks. In contrast, the kiss-and-run model has the potential to explain most of the experimental observations. The kiss-and-run model can be symmetric when fusion and then fission occurs in the same place, and asymmetric when fusion takes place in one location, whereas fission takes place in another. The asymmetric kiss-and-run model resembles the carrier maturation mechanism, and it can be used to explain the transport of large cargo aggregates.
منابع مشابه
Peri-Golgi vesicles contain retrograde but not anterograde proteins consistent with the cisternal progression model of intra-Golgi transport
A cisternal progression mode of intra-Golgi transport requires that Golgi resident proteins recycle by peri-Golgi vesicles, whereas the alternative model of vesicular transport predicts anterograde cargo proteins to be present in such vesicles. We have used quantitative immuno-EM on NRK cells to distinguish peri-Golgi vesicles from other vesicles in the Golgi region. We found significant levels...
متن کاملFoot-and-Mouth Disease Virus 3C Protease Induces Fragmentation of the Golgi Compartment and Blocks Intra-Golgi Transport
Picornavirus infection can cause Golgi fragmentation and impose a block in the secretory pathway which reduces expression of major histocompatibility antigens at the plasma membrane and slows secretion of proinflammatory cytokines. In this study, we show that Golgi fragmentation and a block in secretion are induced by expression of foot-and-mouth disease virus (FMDV) 3C(pro) and that this requi...
متن کاملTransport through the Golgi Apparatus by Rapid Partitioning within a Two-Phase Membrane System
The prevailing view of intra-Golgi transport is cisternal progression, which has a key prediction--that newly arrived cargo exhibits a lag or transit time before exiting the Golgi. Instead, we find that cargo molecules exit at an exponential rate proportional to their total Golgi abundance with no lag. Incoming cargo molecules rapidly mix with those already in the system and exit from partition...
متن کاملMechanisms of transport through the Golgi complex.
The Golgi complex is the central sorting and processing station of the secretory pathway, ensuring that cargo proteins, which are synthesized in the endoplasmic reticulum, are properly glycosylated and packaged into carriers for transport to their final destinations. Two recent studies highlight the fact that properties of membrane lipids play key roles in Golgi structural organization and traf...
متن کاملInteraction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability
Tethering factors mediate initial interaction of transport vesicles with target membranes. Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) enable consequent docking and membrane fusion. We demonstrate that the vesicle tether conserved oligomeric Golgi (COG) complex colocalizes and coimmunoprecipitates with intra-Golgi SNARE molecules. In yeast cells, the ...
متن کامل